from transformers import pipeline import gradio as gr import json import time # Initialize the pipeline with the new model pipe = pipeline("text-generation", model="Blexus/Quble_test_model_v1_INSTRUCT_v2") def format_prompt(message, system, history): prompt = f"SYSTEM: {system} <|endofsystem|>" for entry in history: if len(entry) == 2: user_prompt, bot_response = entry prompt += f"USER: {user_prompt} <|endofuser|>\nASSISTANT: {bot_response}<|endoftext|>\n" prompt += f"USER: {message}<|endofuser|>\nASSISTANT:" return prompt def generate(prompt, system, history, temperature=0.9, max_new_tokens=4096, top_p=0.9, repetition_penalty=1.2): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) formatted_prompt = format_prompt(prompt, system, history) response_text = "We are sorry but Quble doesn't know how to answer." # Generate the response without streaming try: response = pipe(formatted_prompt, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)[0]["generated_text"] response_text = response.split("ASSISTANT:")[-1].strip() # Simulate streaming by yielding parts of the response accumulated_response = "" # To keep track of the full response for char in response_text: accumulated_response += char # Append the new character yield accumulated_response # Yield the accumulated response time.sleep(0.02) # Add a slight delay to simulate typing except Exception as e: print(f"Error generating response: {e}") customCSS = """ #component-7 { height: 1600px; flex-grow: 4; } """ additional_inputs = [ gr.Textbox( label="System prompt", value="You are a helpful intelligent assistant. Your name is Quble.", info="System prompt", interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1024, minimum=64, maximum=4096, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.ChatInterface( generate, additional_inputs=additional_inputs, ) #demo.set_css(customCSS) demo.queue().launch(debug=True)