from transformers import pipeline import gradio as gr import json # Initialize the pipeline with the new model pipe = pipeline("text-generation", model="Blexus/Quble_test_model_v1_INSTRUCT_v1") DATABASE_PATH = "database.json" def load_database(): try: with open(DATABASE_PATH, "r") as file: return json.load(file) except FileNotFoundError: return {} def save_database(database): with open(DATABASE_PATH, "w") as file: json.dump(database, file) def format_prompt(message, history): # Format prompt according to the new template prompt = "SYSTEM: You are a helpful assistant, with no access to external functions.\n<|endofsystem|>\n" for user_prompt, bot_response in history: prompt += f"USER: {user_prompt}\n\n\nASSISTANT: {bot_response}<|endoftext|>\n" prompt += f"USER: {message}\n\n\nASSISTANT:" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=4096, top_p=0.9, repetition_penalty=1.2, ): database = load_database() # Load the database temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) formatted_prompt = format_prompt(prompt, history) if formatted_prompt in database: response = database[formatted_prompt] else: # Use the pipeline to generate the response response = pipe(formatted_prompt, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)[0]["generated_text"] response_text = response.split("ASSISTANT:")[1].strip() # Extract the assistant's response database[formatted_prompt] = response_text save_database(database) # Save the updated database yield response_text css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.ChatInterface( generate, ) demo.launch(debug=True)