import streamlit as st from numerize.numerize import numerize import io import pandas as pd from utilities import (format_numbers,decimal_formater, channel_name_formating, load_local_css,set_header, initialize_data, load_authenticator) from openpyxl import Workbook from openpyxl.styles import Alignment,Font,PatternFill import pickle import streamlit_authenticator as stauth import yaml from yaml import SafeLoader from classes import class_from_dict import plotly.graph_objects as go st.set_page_config(layout='wide') load_local_css('styles.css') set_header() scenarios_to_compare = [] st.title("Saved Scenarios") # for k, v in st.session_state.items(): # if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): # st.session_state[k] = v def comparison_scenarios_df(): ## create summary page if len(scenarios_to_compare) == 0: return summary_df_spend = None summary_df_prospect = None # summary_df_efficiency = None #=# print(scenarios_to_download) for scenario_name in scenarios_to_compare: scenario_dict = st.session_state['saved_scenarios'][scenario_name] _spends = [] column_names = ['Date'] _sales = None dates = None summary_rows_spend = [] summary_rows_prospects = [] for channel in scenario_dict['channels']: if dates is None: dates = channel.get('dates') _spends.append(dates) if _sales is None: _sales = channel.get('modified_sales') else: _sales += channel.get('modified_sales') _spends.append(channel.get('modified_spends') * channel.get('conversion_rate')) column_names.append(channel.get('name')) name_mod = channel_name_formating(channel['name']) summary_rows_spend.append([name_mod, channel.get('modified_total_spends') * channel.get('conversion_rate')]) summary_rows_prospects.append([name_mod, channel.get('modified_total_sales')]) _spends.append(_sales) # column_names.append('NRPU') # scenario_df = pd.DataFrame(_spends).T # scenario_df.columns = column_names # summary_rows.append(['Total', # scenario_dict.get('modified_total_spends') , # scenario_dict.get('modified_total_sales'), # scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'), # '-', # scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')]) # columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"]) # columns_index = columns_index.append(pd.MultiIndex.from_product([[scenario_name],['Spends','NRPU','ROI','MROI','Spends per NRPU']], names=["first", "second"])) columns_index = ['Channel',scenario_name] if summary_df_spend is None: summary_df_spend = pd.DataFrame(summary_rows_spend, columns = columns_index) summary_df_spend = summary_df_spend.set_index('Channel') else: _df = pd.DataFrame(summary_rows_spend, columns = columns_index) _df = _df.set_index('Channel') summary_df_spend = summary_df_spend.merge(_df, left_index=True, right_index=True) if summary_df_prospect is None: summary_df_prospect = pd.DataFrame(summary_rows_prospects, columns = columns_index) summary_df_prospect = summary_df_prospect.set_index('Channel') else: _df = pd.DataFrame(summary_rows_prospects, columns = columns_index) _df = _df.set_index('Channel') summary_df_prospect = summary_df_prospect.merge(_df, left_index=True, right_index=True) st.session_state['disable_download_button'] = False efficiency_df = pd.DataFrame(index = summary_df_prospect.index) for c in summary_df_spend.columns: efficiency_df[c] = (summary_df_prospect[c]/summary_df_prospect[c].sum())/(summary_df_spend[c]/summary_df_spend[c].sum()) efficiency_df[c] = efficiency_df[c].round(2) return summary_df_spend,summary_df_prospect,efficiency_df def plot_comparison_chart(df,metric): # Create traces for each column traces = [] for column in df.columns: traces.append(go.Bar( x=df.index, y=df[column], name=column, text=df[column].apply(numerize), # Adding text for each point textposition='outside', hoverinfo='x+y+text', )) # Create the layout layout = go.Layout( title='Comparing '+ metric, xaxis_title="Channels", yaxis_title=metric, barmode='group' ) # Create the figure fig = go.Figure(data=traces, layout=layout) return fig def create_comparison_plots(): # comparison_scenarios_df() spends_df, prospects_df, efficiency_df = comparison_scenarios_df() # st.dataframe(spends_df) st.plotly_chart(plot_comparison_chart(spends_df,"Spends"),use_container_width=True) st.plotly_chart(plot_comparison_chart(prospects_df,"Contributions"),use_container_width=True) st.plotly_chart(plot_comparison_chart(efficiency_df,"Efficiency"),use_container_width=True) def create_scenario_summary(scenario_dict): summary_rows = [] actual_total_spends = scenario_dict.get('actual_total_spends'), modified_total_spends = scenario_dict.get('modified_total_spends'), actual_total_sales = scenario_dict.get('actual_total_sales'), modified_total_sales = scenario_dict.get('modified_total_sales') # st.write(modified_total_spends[0]) # st.write(actual_total_spends[0]) # st.write(modified_total_sales) # st.write(actual_total_sales[0]) # st.write(modified_total_spends[0]) for channel_dict in scenario_dict['channels']: # st.write(channel_dict['name']) name_mod = channel_name_formating(channel_dict['name']) summary_rows.append([name_mod, channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate'), channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate'), channel_dict.get('actual_total_sales') , channel_dict.get('modified_total_sales'), # channel_dict.get('modified_total_sales')/modified_total_spends[0], # channel_dict.get('modified_total_sales')/modified_total_spends[0] # 1,2 (channel_dict.get('actual_total_sales') /actual_total_sales[0])/(channel_dict.get('actual_total_spends') /actual_total_spends[0] ), (channel_dict.get('modified_total_sales') /modified_total_sales )/(channel_dict.get('modified_total_spends') /modified_total_spends[0] ) # # # channel_dict.get('actual_mroi'), # channel_dict.get('modified_mroi'), # channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('actual_total_sales'), # channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('modified_total_sales') ]) summary_rows.append(['Total', scenario_dict.get('actual_total_spends'), scenario_dict.get('modified_total_spends'), scenario_dict.get('actual_total_sales'), scenario_dict.get('modified_total_sales'), 1.0, 1.0 # scenario_dict.get('actual_total_sales') / scenario_dict.get('actual_total_spends'), # scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'), # '-', # '-', # scenario_dict.get('actual_total_spends') / scenario_dict.get('actual_total_sales'), # scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales') ]) adf = pd.DataFrame(summary_rows) # st.write(adf.columns) adf.columns = ["1","2","3","4","5","6","7"] adf.index = adf["1"].to_list() #["1","2","3","4","5","6","7","8","9","10","11","12","13","14"] adf.drop(columns= ["1"],inplace= True) # columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["",""]) # columns_index = columns_index.append(pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""])) columns_index = pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""]) adf.columns = columns_index return adf # pd.DataFrame(summary_rows, columns=columns_index) def summary_df_to_worksheet(df, ws): heading_fill = PatternFill(fill_type='solid',start_color='FFFFFFFF',end_color='FFFFFFFF') # Define border style border_style = Border( left=Side(border_style='thin', color='00000000'), right=Side(border_style='thin', color='00000000'), top=Side(border_style='thin', color='00000000'), bottom=Side(border_style='thin', color='00000000') ) number_format = '0.00' for j,header in enumerate(df.columns.values): col = j + 1 for i in range(1,3): ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='00000000') ws.cell(row=i,column=j+1).fill = heading_fill # ws.cell.border = border_style # if col > 1 and (col - 6)%5==0: # ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col) # ws.cell(row=1,column=col).alignment = Alignment(horizontal='center') # # ws.cell.border = border_style # Apply borders to all cells, including empty cells for row in ws.iter_rows(): for cell in row: cell.border = border_style for i,row in enumerate(df.itertuples()): for j,value in enumerate(row): if j == 0: continue # elif (j-2)%4 == 0 or (j-3)%4 == 0: # ws.cell(row=i+3, column = j, value=value) # # cell.border = border_style # # .number_format = '$#,##0.0' # if isinstance(value, (int, float)): # cell.number_format = number_format else: ws.cell(row=i+3, column = j, value=value) # cell.border = border_style if isinstance(value, (int, float)): cell.number_format = '$#,##0.0' # cell.number_format = number_format # Auto-size columns for col in ws.columns: max_length = 15 column = col[0].column_letter for cell in col: try: if len(str(cell.value)) > max_length: max_length = len(cell.value) except: pass adjusted_width = (max_length + 2) ws.column_dimensions[column].width = adjusted_width from openpyxl.utils import get_column_letter from openpyxl.styles import Font, PatternFill from openpyxl.styles import PatternFill, Font, Alignment, Border, Side import logging def scenario_df_to_worksheet(df, ws): heading_fill = PatternFill(start_color='FF11B6BD', end_color='FF11B6BD', fill_type='solid') for j, header in enumerate(df.columns.values): cell = ws.cell(row=1, column=j + 1, value=header) cell.font = Font(bold=True, color='FF11B6BD') cell.fill = heading_fill for i, row in enumerate(df.itertuples()): for j, value in enumerate(row[1:], start=1): # Start from index 1 to skip the index column try: cell = ws.cell(row=i + 2, column=j, value=value) if isinstance(value, (int, float)): cell.number_format = '$#,##0.0' elif isinstance(value, str): cell.value = value[:32767] else: cell.value = str(value) except ValueError as e: logging.error(f"Error assigning value '{value}' to cell {get_column_letter(j)}{i+2}: {e}") cell.value = None # Assign None to the cell where the error occurred return ws def download_scenarios(): """ Makes a excel with all saved scenarios and saves it locally """ ## create summary page if len(scenarios_to_download) == 0: return wb = Workbook() wb.iso_dates = True wb.remove(wb.active) st.session_state['xlsx_buffer'] = io.BytesIO() summary_df = None ## print(scenarios_to_download) for scenario_name in scenarios_to_download: scenario_dict = st.session_state['saved_scenarios'][scenario_name] _spends = [] column_names = ['Date'] _sales = None dates = None summary_rows = [] for channel in scenario_dict['channels']: if dates is None: dates = channel.get('dates') _spends.append(dates) if _sales is None: _sales = channel.get('modified_sales') else: _sales += channel.get('modified_sales') _spends.append(channel.get('modified_spends') * channel.get('conversion_rate')) column_names.append(channel.get('name')) name_mod = channel_name_formating(channel['name']) summary_rows.append([name_mod, channel.get('modified_total_spends') * channel.get('conversion_rate') , channel.get('modified_total_sales'), # channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate'), # channel.get('modified_mroi'), # channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate') ]) _spends.append(_sales) column_names.append('NRPU') scenario_df = pd.DataFrame(_spends).T scenario_df.columns = column_names ## write to sheet # ws = wb.create_sheet(scenario_name) # scenario_df_to_worksheet(scenario_df, ws) summary_rows.append(['Total', scenario_dict.get('modified_total_spends') , scenario_dict.get('modified_total_sales'), # scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'), # '-', # scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales') ]) columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"]) columns_index = columns_index.append(pd.MultiIndex.from_product([[scenario_name],['Spends','Prospects', # 'ROI','MROI','Spends per NRPU' ]], names=["first", "second"])) if summary_df is None: summary_df = pd.DataFrame(summary_rows, columns = columns_index) summary_df = summary_df.set_index(('','Channel')) else: _df = pd.DataFrame(summary_rows, columns = columns_index) _df = _df.set_index(('','Channel')) summary_df = summary_df.merge(_df, left_index=True, right_index=True) ws = wb.create_sheet('Summary',0) summary_df_to_worksheet(summary_df.reset_index(), ws) wb.save(st.session_state['xlsx_buffer']) st.session_state['disable_download_button'] = False def disable_download_button(): st.session_state['disable_download_button'] =True def transform(x): if x.name == ("",'Channel'): return x elif x.name[0] == 'Efficiency' or x.name[0] == 'MROI': return x.apply(lambda y : y if isinstance(y,str) else decimal_formater(format_numbers(y,include_indicator=False,n_decimals=2),n_decimals=2)) else: return x.apply(lambda y : y if isinstance(y,str) else format_numbers(y)) def delete_scenario(): if selected_scenario in st.session_state['saved_scenarios']: del st.session_state['saved_scenarios'][selected_scenario] with open('../saved_scenarios.pkl', 'wb') as f: pickle.dump(st.session_state['saved_scenarios'],f) def load_scenario(): if selected_scenario in st.session_state['saved_scenarios']: st.session_state['scenario'] = class_from_dict(selected_scenario_details) authenticator = st.session_state.get('authenticator') if authenticator is None: authenticator = load_authenticator() name, authentication_status, username = authenticator.login('Login', 'main') auth_status = st.session_state.get('authentication_status') if auth_status == True: is_state_initiaized = st.session_state.get('initialized',False) if not is_state_initiaized: ## print("Scenario page state reloaded") initialize_data(target_file = "Overview_data_test_panel@#prospects.xlsx") saved_scenarios = st.session_state['saved_scenarios'] if len(saved_scenarios) ==0: st.header('No saved scenarios') else: with st.sidebar: with st.expander('View Scenario Details'): st.markdown("""