from numerize.numerize import numerize import streamlit as st import pandas as pd import json from classes import Channel, Scenario import numpy as np from plotly.subplots import make_subplots import plotly.graph_objects as go from classes import class_to_dict from collections import OrderedDict import io import plotly from pathlib import Path import pickle import yaml from yaml import SafeLoader from streamlit.components.v1 import html import smtplib from scipy.optimize import curve_fit from sklearn.metrics import r2_score from classes import class_from_dict import os import base64 color_palette = [ "#F3F3F0", "#5E7D7E", "#2FA1FF", "#00EDED", "#00EAE4", "#304550", "#EDEBEB", "#7FBEFD", "#003059", "#A2F3F3", "#E1D6E2", "#B6B6B6", ] CURRENCY_INDICATOR = '$' import streamlit_authenticator as stauth def load_authenticator(): with open("config.yaml") as file: config = yaml.load(file, Loader=SafeLoader) st.session_state["config"] = config authenticator = stauth.Authenticate( credentials=config["credentials"], cookie_name=config["cookie"]["name"], key=config["cookie"]["key"], cookie_expiry_days=config["cookie"]["expiry_days"], preauthorized=config["preauthorized"], ) st.session_state["authenticator"] = authenticator return authenticator # Authentication def authentication(): with open("config.yaml") as file: config = yaml.load(file, Loader=SafeLoader) authenticator = stauth.Authenticate( config["credentials"], config["cookie"]["name"], config["cookie"]["key"], config["cookie"]["expiry_days"], config["preauthorized"], ) name, authentication_status, username = authenticator.login("Login", "main") return authenticator, name, authentication_status, username def nav_page(page_name, timeout_secs=3): nav_script = """ """ % ( page_name, timeout_secs, ) html(nav_script) # def load_local_css(file_name): # with open(file_name) as f: # st.markdown(f'', unsafe_allow_html=True) # def set_header(): # return st.markdown(f"""
#

MMM LiME

# #
""", unsafe_allow_html=True) path = os.path.dirname(__file__) file_ = open(f"{path}/ALDI_2017.png", "rb") contents = file_.read() data_url = base64.b64encode(contents).decode("utf-8") file_.close() DATA_PATH = "./data" IMAGES_PATH = "./data/images_224_224" def load_local_css(file_name): with open(file_name) as f: st.markdown(f"", unsafe_allow_html=True) # def set_header(): # return st.markdown(f"""
#

H & M Recommendations

# Logo #
""", unsafe_allow_html=True) path1 = os.path.dirname(__file__) file_1 = open(f"{path}/ALDI_2017.png", "rb") contents1 = file_1.read() data_url1 = base64.b64encode(contents1).decode("utf-8") file_1.close() DATA_PATH1 = "./data" IMAGES_PATH1 = "./data/images_224_224" def set_header(): return st.markdown( f"""
""", unsafe_allow_html=True, ) # def set_header(): # logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path # text = "LiME" # return st.markdown(f"""
# Logo #

{text}

#
""", unsafe_allow_html=True) def s_curve(x, K, b, a, x0): return K / (1 + b * np.exp(-a * (x - x0))) def panel_level(input_df, date_column="Date"): # Ensure 'Date' is set as the index if date_column not in input_df.index.names: input_df = input_df.set_index(date_column) # Select numeric columns only (excluding 'Date' since it's now the index) numeric_columns_df = input_df.select_dtypes(include="number") # Group by 'Date' (which is the index) and sum the numeric columns aggregated_df = numeric_columns_df.groupby(input_df.index).sum() # Reset index if you want 'Date' back as a column aggregated_df = aggregated_df.reset_index() return aggregated_df def initialize_data( target_file, panel=None, updated_rcs=None, metrics=None ): # uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173, # "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1, # "digital_spends":1} # # # print('State initialized') excel = pd.read_excel(target_file, sheet_name=None) # Extract dataframes for raw data, spend input, and contribution MMM raw_df = excel["RAW DATA MMM"] spend_df = excel["SPEND INPUT"] contri_df = excel["CONTRIBUTION MMM"] # Check if the panel is not None raw_df = panel_level(raw_df, date_column="Date") spend_df = panel_level(spend_df, date_column="Week") contri_df = panel_level(contri_df, date_column="Date") # Revenue_df = excel['Revenue'] ## remove sesonalities, indices etc ... exclude_columns = [ "Date", "Region", "Controls_Grammarly_Index_SeasonalAVG", "Controls_Quillbot_Index", "Daily_Positive_Outliers", "External_RemoteClass_Index", "Intervals ON 20190520-20190805 | 20200518-20200803 | 20210517-20210802", "Intervals ON 20190826-20191209 | 20200824-20201207 | 20210823-20211206", "Intervals ON 20201005-20201019", "Promotion_PercentOff", "Promotion_TimeBased", "Seasonality_Indicator_Chirstmas", "Seasonality_Indicator_NewYears_Days", "Seasonality_Indicator_Thanksgiving", "Trend 20200302 / 20200803", ] raw_df["Date"] = pd.to_datetime(raw_df["Date"]) contri_df["Date"] = pd.to_datetime(contri_df["Date"]) input_df = raw_df.sort_values(by="Date") output_df = contri_df.sort_values(by="Date") spend_df["Week"] = pd.to_datetime( spend_df["Week"], format="%Y-%m-%d", errors="coerce" ) spend_df.sort_values(by="Week", inplace=True) # spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce') # spend_df = spend_df.sort_values(by='Week') channel_list = [col for col in input_df.columns if col not in exclude_columns] channel_list = list(set(channel_list) - set(["fb_level_achieved_tier_1", "ga_app"])) response_curves = {} mapes = {} rmses = {} upper_limits = {} powers = {} r2 = {} conv_rates = {} output_cols = [] channels = {} sales = None dates = input_df.Date.values actual_output_dic = {} actual_input_dic = {} for inp_col in channel_list: # st.write(inp_col) spends = input_df[inp_col].values x = spends.copy() # upper limit for penalty upper_limits[inp_col] = 2 * x.max() # contribution out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0] y = output_df[out_col].values.copy() actual_output_dic[inp_col] = y.copy() actual_input_dic[inp_col] = x.copy() ##output cols aggregation output_cols.append(out_col) params = pd.read_excel("response_curves_parameters.xlsx",index_col = "channel") param_dicts = {col: params[col].to_dict() for col in params.columns} response_curves[inp_col] = { "Kd": param_dicts["Kd"][inp_col], "n": param_dicts["n"][inp_col], "x_min": param_dicts["x_min"][inp_col], "x_max": param_dicts["x_max"][inp_col], "y_min": param_dicts["y_min"][inp_col], "y_max": param_dicts["y_max"][inp_col] } updated_rcs_key = f"{metrics}#@{panel}#@{inp_col}" if updated_rcs is not None and updated_rcs_key in list(updated_rcs.keys()): response_curves[inp_col] = updated_rcs[updated_rcs_key] # # # print(response_curves) ## conversion rates spend_col = [ _col for _col in spend_df.columns if _col.startswith(inp_col.rsplit("_", 1)[0]) ][0] # # # print(spend_col) # # # print('## # printing spendssss') # # # print(spend_col) conv = ( spend_df.set_index("Week")[spend_col] / input_df.set_index("Date")[inp_col].clip(lower=1) ).reset_index() conv.rename(columns={"index": "Week"}, inplace=True) conv["year"] = conv.Week.dt.year conv_rates[inp_col] = list(conv.drop("Week", axis=1).mean().to_dict().values())[ 0 ] # # # print(conv_rates) ### # print('Before',conv_rates[inp_col]) # conv_rates[inp_col] = uopx_conv_rates[inp_col] ### # print('After',(conv_rates[inp_col])) channel = Channel( name=inp_col, dates=dates, spends=spends, sales= y.copy(), # conversion_rate = np.mean(list(conv_rates[inp_col].values())), conversion_rate=1.0 ,#conv_rates[inp_col], response_curve_type="hill-eq", response_curve_params={ "Kd": param_dicts["Kd"][inp_col], "n": param_dicts["n"][inp_col], "x_min": param_dicts["x_min"][inp_col], "x_max": param_dicts["x_max"][inp_col], "y_min": param_dicts["y_min"][inp_col], "y_max": param_dicts["y_max"][inp_col], "num_pos_obsv":param_dicts["num_pos_obsv"][inp_col] }, bounds=np.array([-10, 10]), channel_bounds_min = round(param_dicts["x_min"][inp_col]*100*param_dicts["num_pos_obsv"][inp_col]/param_dicts["current_spends"][inp_col]), channel_bounds_max = 100 ) channels[inp_col] = channel if sales is None: sales = channel.actual_sales else: sales += channel.actual_sales # # # print(actual_output_dic) other_contributions = ( output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only=True).values ) correction = output_df.drop("Date", axis=1).sum(axis=1).values - (sales + other_contributions) # # # print(other_contributions) # # # print(correction) scenario = Scenario( name="default", channels=channels, constant=other_contributions, correction=correction, ) ## setting session variables st.session_state["initialized"] = True st.session_state["actual_df"] = input_df st.session_state["raw_df"] = raw_df st.session_state["contri_df"] = output_df default_scenario_dict = class_to_dict(scenario) st.session_state["default_scenario_dict"] = default_scenario_dict st.session_state["scenario"] = scenario st.session_state["channels_list"] = channel_list st.session_state["optimization_channels"] = { channel_name: False for channel_name in channel_list } st.session_state["rcs"] = response_curves st.session_state["powers"] = powers st.session_state["actual_contribution_df"] = pd.DataFrame(actual_output_dic) st.session_state["actual_input_df"] = pd.DataFrame(actual_input_dic) for channel in channels.values(): st.session_state[channel.name] = numerize( channel.actual_total_spends * 1.0, 1 ) st.session_state["xlsx_buffer"] = io.BytesIO() if Path("../saved_scenarios.pkl").exists(): with open("../saved_scenarios.pkl", "rb") as f: st.session_state["saved_scenarios"] = pickle.load(f) else: st.session_state["saved_scenarios"] = OrderedDict() # st.session_state["total_spends_change"] = 0 st.session_state["optimization_channels"] = { channel_name: False for channel_name in channel_list } st.session_state["disable_download_button"] = True # if target_file == : # st.session_state["dividing_parameter"] = # else : def create_channel_summary(scenario): # Provided data data = { "Channel": [ "Paid Search", "Ga will cid baixo risco", "Digital tactic others", "Fb la tier 1", "Fb la tier 2", "Paid social others", "Programmatic", "Kwai", "Indicacao", "Infleux", "Influencer", ], "Spends": [ "$ 11.3K", "$ 155.2K", "$ 50.7K", "$ 125.4K", "$ 125.2K", "$ 105K", "$ 3.3M", "$ 47.5K", "$ 55.9K", "$ 632.3K", "$ 48.3K", ], "Revenue": [ "558.0K", "3.5M", "5.2M", "3.1M", "3.1M", "2.1M", "20.8M", "1.6M", "728.4K", "22.9M", "4.8M", ], } # Create DataFrame df = pd.DataFrame(data) # Convert currency strings to numeric values df["Spends"] = ( df["Spends"] .replace({"\$": "", "K": "*1e3", "M": "*1e6"}, regex=True) .map(pd.eval) .astype(int) ) df["Revenue"] = ( df["Revenue"] .replace({"\$": "", "K": "*1e3", "M": "*1e6"}, regex=True) .map(pd.eval) .astype(int) ) # Calculate ROI df["ROI"] = (df["Revenue"] - df["Spends"]) / df["Spends"] # Format columns format_currency = lambda x: f"${x:,.1f}" format_roi = lambda x: f"{x:.1f}" df["Spends"] = [ "$ 11.3K", "$ 155.2K", "$ 50.7K", "$ 125.4K", "$ 125.2K", "$ 105K", "$ 3.3M", "$ 47.5K", "$ 55.9K", "$ 632.3K", "$ 48.3K", ] df["Revenue"] = [ "$ 536.3K", "$ 3.4M", "$ 5M", "$ 3M", "$ 3M", "$ 2M", "$ 20M", "$ 1.5M", "$ 7.1M", "$ 22M", "$ 4.6M", ] df["ROI"] = df["ROI"].apply(format_roi) return df def create_contribution_pie(): color_palette = [ "#F3F3F0", "#5E7D7E", "#2FA1FF", "#00EDED", "#00EAE4", "#304550", "#EDEBEB", "#7FBEFD", "#003059", "#A2F3F3", "#E1D6E2", "#B6B6B6", ] total_contribution_fig = make_subplots( rows=1, cols=2, subplot_titles=["Spends", "Revenue"], specs=[[{"type": "pie"}, {"type": "pie"}]], ) channels_list = [ "Paid Search", "Ga will cid baixo risco", "Digital tactic others", "Fb la tier 1", "Fb la tier 2", "Paid social others", "Programmatic", "Kwai", "Indicacao", "Infleux", "Influencer", "Non Media", ] # Assign colors from the limited palette to channels colors_map = { col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list) } colors_map["Non Media"] = color_palette[ 5 ] # Assign fixed green color for 'Non Media' # Hardcoded values for Spends and Revenue spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0] revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16] # Add trace for Spends pie chart total_contribution_fig.add_trace( go.Pie( labels=[channel_name for channel_name in channels_list], values=spends_values, marker=dict( colors=[colors_map[channel_name] for channel_name in channels_list] ), hole=0.3, ), row=1, col=1, ) # Add trace for Revenue pie chart total_contribution_fig.add_trace( go.Pie( labels=[channel_name for channel_name in channels_list], values=revenue_values, marker=dict( colors=[colors_map[channel_name] for channel_name in channels_list] ), hole=0.3, ), row=1, col=2, ) total_contribution_fig.update_traces( textposition="inside", texttemplate="%{percent:.1%}" ) total_contribution_fig.update_layout( uniformtext_minsize=12, title="Channel contribution", uniformtext_mode="hide" ) return total_contribution_fig def create_contribuion_stacked_plot(scenario): weekly_contribution_fig = make_subplots( rows=1, cols=2, subplot_titles=["Spends", "Revenue"], specs=[[{"type": "bar"}, {"type": "bar"}]], ) raw_df = st.session_state["raw_df"] df = raw_df.sort_values(by="Date") x = df.Date weekly_spends_data = [] weekly_sales_data = [] for i, channel_name in enumerate(st.session_state["channels_list"]): color = color_palette[i % len(color_palette)] weekly_spends_data.append( go.Bar( x=x, y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate, name=channel_name_formating(channel_name), hovertemplate="Date:%{x}
Spend:%{y:$.2s}", legendgroup=channel_name, marker_color=color, ) ) weekly_sales_data.append( go.Bar( x=x, y=scenario.channels[channel_name].actual_sales, name=channel_name_formating(channel_name), hovertemplate="Date:%{x}
Revenue:%{y:$.2s}", legendgroup=channel_name, showlegend=False, marker_color=color, ) ) for _d in weekly_spends_data: weekly_contribution_fig.add_trace(_d, row=1, col=1) for _d in weekly_sales_data: weekly_contribution_fig.add_trace(_d, row=1, col=2) weekly_contribution_fig.add_trace( go.Bar( x=x, y=scenario.constant + scenario.correction, name="Non Media", hovertemplate="Date:%{x}
Revenue:%{y:$.2s}", marker_color=color_palette[-1], ), row=1, col=2, ) weekly_contribution_fig.update_layout( barmode="stack", title="Channel contribution by week", xaxis_title="Date" ) weekly_contribution_fig.update_xaxes(showgrid=False) weekly_contribution_fig.update_yaxes(showgrid=False) return weekly_contribution_fig def create_channel_spends_sales_plot(channel): if channel is not None: x = channel.dates _spends = channel.actual_spends * channel.conversion_rate _sales = channel.actual_sales channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) channel_sales_spends_fig.add_trace( go.Bar( x=x, y=_sales, marker_color=color_palette[ 3 ], # You can choose a color from the palette name="Revenue", hovertemplate="Date:%{x}
Revenue:%{y:$.2s}", ), secondary_y=False, ) channel_sales_spends_fig.add_trace( go.Scatter( x=x, y=_spends, line=dict( color=color_palette[2] ), # You can choose another color from the palette name="Spends", hovertemplate="Date:%{x}
Spend:%{y:$.2s}", ), secondary_y=True, ) channel_sales_spends_fig.update_layout( xaxis_title="Date", yaxis_title="Revenue", yaxis2_title="Spends ($)", title="Channel spends and Revenue week-wise", ) channel_sales_spends_fig.update_xaxes(showgrid=False) channel_sales_spends_fig.update_yaxes(showgrid=False) else: raw_df = st.session_state["raw_df"] df = raw_df.sort_values(by="Date") x = df.Date scenario = class_from_dict(st.session_state["default_scenario_dict"]) _sales = 0 #scenario.constant + scenario.correction channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) channel_sales_spends_fig.add_trace( go.Bar( x=x, y=_sales, marker_color=color_palette[ 0 ], # You can choose a color from the palette name="Revenue", hovertemplate="Date:%{x}
Revenue:%{y:$.2s}", ), secondary_y=False, ) channel_sales_spends_fig.update_layout( xaxis_title="Date", yaxis_title="Revenue", yaxis2_title="Spends ($)", title="Channel spends and Revenue week-wise", ) channel_sales_spends_fig.update_xaxes(showgrid=False) channel_sales_spends_fig.update_yaxes(showgrid=False) return channel_sales_spends_fig def format_numbers(value, n_decimals=1, include_indicator=True): if include_indicator: return f"{CURRENCY_INDICATOR} {numerize(value,n_decimals)}" else: return f"{numerize(value,n_decimals)}" def format_numbers_f(value, n_decimals=1, include_indicator=False): if include_indicator: return f"{CURRENCY_INDICATOR} {numerize(value,n_decimals)}" else: return f"{numerize(value,n_decimals)}" def decimal_formater(num_string, n_decimals=1): parts = num_string.split(".") if len(parts) == 1: return num_string + "." + "0" * n_decimals else: to_be_padded = n_decimals - len(parts[-1]) if to_be_padded > 0: return num_string + "0" * to_be_padded else: return num_string def channel_name_formating(channel_name): name_mod = channel_name.replace("_", " ") if name_mod.lower().endswith(" imp"): name_mod = name_mod.replace("Imp", "Spend") elif name_mod.lower().endswith(" clicks"): name_mod = name_mod.replace("Clicks", "Spend") # st.write(channel_name) key_dict = my_dict = { "DisplayProspecting" :"Display Prospecting", "CableTV" :"Cable TV", "SocialProspecting": "Social Prospecting", "Connected&OTTTV" :"Connected & OTTTV", "SocialRetargeting" : "Social Retargeting", "DigitalPartners" :"Digital Partners", "Audio" :"Audio", "BroadcastTV": "Broadcast TV", "SearchNon-brand": "Search Non-brand", "Email" :"Email" , "SearchBrand": "Search Brand", "DisplayRetargeting" : "Display Retargeting" , "\xa0Video":"Video" } return key_dict[channel_name] def send_email(email, message): s = smtplib.SMTP("smtp.gmail.com", 587) s.starttls() s.login("geethu4444@gmail.com", "jgydhpfusuremcol") s.sendmail("geethu4444@gmail.com", email, message) s.quit() if __name__ == "__main__": initialize_data()