import streamlit as st
from numerize.numerize import numerize
import numpy as np
from functools import partial
from collections import OrderedDict
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from datetime import datetime, timedelta
from dateutil.relativedelta import relativedelta
import time
import Streamlit_functions as sf
from utilities import (
format_numbers,format_numbers_f,
load_local_css,
set_header,
initialize_data,
load_authenticator,
send_email,
channel_name_formating,
)
from io import BytesIO
# import xlsxwriter
import warnings
# Suppress specific warnings if necessary
warnings.filterwarnings("ignore")
warnings.filterwarnings("ignore", category=UserWarning, message="The widget with key")
# for i in :
# warnings.filterwarnings("ignore",)
from classes import class_from_dict, class_to_dict
import pickle
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import re
import pandas as pd
import plotly.express as px
import response_curves_model_quality as rc
st.set_page_config(layout="wide")
load_local_css("styles.css")
set_header()
from pptx import Presentation
from pptx.util import Inches
from io import BytesIO
import plotly.io as pio
for k, v in st.session_state.items():
if k not in ["logout", "login", "config"] and not k.startswith("FormSubmitter"):
st.session_state[k] = v
# ======================================================== #
# ======================= Functions ====================== #
# ======================================================== #
def save_ppt_file(summary_df_sorted,fig1,fig2,fig3):
summary_df_sorted.index = summary_df_sorted["Channel_name"]
# Initialize PowerPoint presentation
prs = Presentation()
# Helper function to add Plotly figure to slide
def add_plotly_chart_to_slide(slide, fig, left, top, width, height):
img_stream = BytesIO()
pio.write_image(fig, img_stream, format='png',engine="orca")
slide.shapes.add_picture(img_stream, left, top, width, height)
for i in range(0,len(channels_list)):
# print(channels_list[i])
slide_1 = prs.slides.add_slide(prs.slide_layouts[6])
fig = rc.response_curves(channels_list[i], summary_df_sorted["Optimized_spend"][channels_list[i]], summary_df_sorted["New_sales"][channels_list[i]])
add_plotly_chart_to_slide(slide_1, fig, Inches(0.1), Inches(0.1), width=Inches(9), height=Inches(7))
# Update layout
fig1.update_layout(
legend=dict(
orientation="h", # Horizontal orientation
yanchor="top", # Anchor the legend at the top
y=-0.4, # Position the legend below the plot area
xanchor="center", # Center the legend horizontally
x=0.5 # Center the legend on the x-axis
)
)
# Update layout
fig2.update_layout(
legend=dict(
orientation="h", # Horizontal orientation
yanchor="top", # Anchor the legend at the top
y=-0.4, # Position the legend below the plot area
xanchor="center", # Center the legend horizontally
x=0.5 # Center the legend on the x-axis
)
)
# Update layout
fig3.update_layout(
legend=dict(
orientation="h", # Horizontal orientation
yanchor="top", # Anchor the legend at the top
y=-0.4, # Position the legend below the plot area
xanchor="center", # Center the legend horizontally
x=0.5 # Center the legend on the x-axis
)
)
slide_1 = prs.slides.add_slide(prs.slide_layouts[6])
add_plotly_chart_to_slide(slide_1, fig1, Inches(0.1), Inches(1), width=Inches(9.5), height=Inches(6))
slide_1 = prs.slides.add_slide(prs.slide_layouts[6])
add_plotly_chart_to_slide(slide_1, fig2, Inches(0.1), Inches(1), width=Inches(9.5), height=Inches(6))
slide_1 = prs.slides.add_slide(prs.slide_layouts[6])
add_plotly_chart_to_slide(slide_1, fig3, Inches(0.1), Inches(1), width=Inches(9.5), height=Inches(6))
# Save to a BytesIO object
ppt_stream = BytesIO()
prs.save(ppt_stream)
ppt_stream.seek(0)
return ppt_stream.getvalue()
def first_day_of_next_year(date):
next_year = date.year + 1
first_day = datetime(next_year, 1, 1).date()
# Calculate the last day of the next year
last_day = (first_day + relativedelta(years=1, days=-1))
return first_day, last_day
def first_day_of_next_quarter(date):
current_quarter = (date.month - 1) // 3 + 1
next_quarter_first_month = ((current_quarter % 4) * 3) + 1
next_quarter_year = date.year if next_quarter_first_month > 1 else date.year + 1
# Ensure month is within valid range
if next_quarter_first_month < 1 or next_quarter_first_month > 12:
raise ValueError("Calculated month is out of range: {}".format(next_quarter_first_month))
# st.write(next_quarter_first_month)
first_day_next_quarter = datetime(next_quarter_year, next_quarter_first_month, 1).date()
last_day_next_quarter = (first_day_next_quarter + relativedelta(months=3)) - relativedelta(days=1)
return first_day_next_quarter, last_day_next_quarter
def first_day_of_next_month(date):
next_month_date = date + relativedelta(months=1)
first_day_next_month = next_month_date.replace(day=1)
last_day_next_month = (first_day_next_month + relativedelta(months=1)) - relativedelta(days=1)
return first_day_next_month, last_day_next_month
def optimize(key, status_placeholder):
"""
Optimize the spends for the sales
"""
channel_list = [
key for key, value in st.session_state["optimization_channels"].items() if value
]
if len(channel_list) > 0:
scenario = st.session_state["scenario"]
if key.lower() == "media spends":
with status_placeholder:
with st.spinner("Optimizing"):
# # # print(channel_list)
# # # print(st.session_state["total_spends_change"])
result = st.session_state["scenario"].optimize(
st.session_state["total_spends_change"], channel_list
# result = st.session_state["scenario"].spends_optimisation(
# st.session_state["total_spends_change"], channel_list
)
# print("")
# print(list(zip(*result)))
# elif key.lower() == "revenue":
else:
with status_placeholder:
with st.spinner("Optimizing"):
result = st.session_state["scenario"].optimize_spends(
st.session_state["total_sales_change"], channel_list
)
for channel_name, modified_spends in result:
st.session_state[channel_name] = numerize(
modified_spends * 1.0,
1,
)
prev_spends = (
st.session_state["scenario"].channels[channel_name].actual_total_spends
)
st.session_state[f"{channel_name}_change"] = round(
100 * (modified_spends - prev_spends) / prev_spends, 2
)
def save_scenario(scenario_name):
"""
Save the current scenario with the mentioned name in the session state
Parameters
----------
scenario_name
Name of the scenario to be saved
"""
if "saved_scenarios" not in st.session_state:
st.session_state = OrderedDict()
# st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
st.session_state["saved_scenarios"][scenario_name] = class_to_dict(
st.session_state["scenario"]
)
st.session_state["scenario_input"] = ""
# # # print(type(st.session_state['saved_scenarios']))
with open("../saved_scenarios.pkl", "wb") as f:
pickle.dump(st.session_state["saved_scenarios"], f)
if "allow_spends_update" not in st.session_state:
st.session_state["allow_spends_update"] = True
if "allow_sales_update" not in st.session_state:
st.session_state["allow_sales_update"] = True
def update_sales_abs_slider():
actual_sales = _scenario.actual_total_sales
if validate_input(st.session_state["total_sales_change_abs_slider"]):
modified_sales = extract_number_for_string(
st.session_state["total_sales_change_abs_slider"]
)
st.session_state["total_sales_change"] = round(
((modified_sales / actual_sales) - 1) * 100
)
st.session_state["total_sales_change_abs"] = numerize(modified_sales, 1)
def update_sales_abs():
if (
st.session_state["total_sales_change_abs"]
in st.session_state["total_sales_change_abs_slider_options"]
):
st.session_state["allow_sales_update"] = True
else:
st.session_state["allow_sales_update"] = False
actual_sales = _scenario.actual_total_sales
if (
validate_input(st.session_state["total_sales_change_abs"])
and st.session_state["allow_sales_update"]
):
modified_sales = extract_number_for_string(
st.session_state["total_sales_change_abs"]
)
st.session_state["total_sales_change"] = round(
((modified_sales / actual_sales) - 1) * 100
)
st.session_state["total_sales_change_abs_slider"] = numerize(modified_sales, 1)
def update_sales():
st.session_state["total_sales_change_abs"] = numerize(
(1 + st.session_state["total_sales_change"] / 100)
* _scenario.actual_total_sales,
1,
)
st.session_state["total_sales_change_abs_slider"] = numerize(
(1 + st.session_state["total_sales_change"] / 100)
* _scenario.actual_total_sales,
1,
)
# def update_all_spends_abs_slider():
# actual_spends = _scenario.actual_total_spends
# if validate_input(st.session_state["total_spends_change_abs_slider"]):
# modified_spends = extract_number_for_string(
# st.session_state["total_spends_change_abs_slider"]
# )
# st.session_state["total_spends_change"] = round(
# ((modified_spends / actual_spends) - 1) * 100
# )
# st.session_state["total_spends_change_abs"] = numerize(modified_spends, 1)
# update_all_spends()
# def update_all_spends_abs_slider():
# actual_spends = _scenario.actual_total_spends
# if validate_input(st.session_state["total_spends_change_abs_slider"]):
# # # print("#" * 100)
# # # print(st.session_state["total_spends_change_abs_slider"])C:\Users\PragyaJatav\Downloads\Untitled Folder 2\simulatorAldi\pages\8_Scenario_Planner.py
# # # print("#" * 100)
# modified_spends = extract_number_for_string(
# st.session_state["total_spends_change_abs_slider"]
# )
# st.session_state["total_spends_change"] = (
# (modified_spends / actual_spends) - 1
# ) * 100
# st.session_state["total_spends_change_abs"] = st.session_state[
# "total_spends_change_abs_slider"
# ]
# update_all_spends()
def update_all_spends_abs():
st.write("aon update spends abs")
if (
st.session_state["total_spends_change_abs"]
in st.session_state["total_spends_change_abs_slider_options"]
):
st.session_state["allow_spends_update"] = True
else:
st.session_state["allow_spends_update"] = False
# st.warning("Invalid Input")
actual_spends = _scenario.actual_total_spends
if (
validate_input(st.session_state["total_spends_change_abs"])
and st.session_state["allow_spends_update"]
):
modified_spends = extract_number_for_string(
st.session_state["total_spends_change_abs"]
)
st.session_state["total_spends_change"] = (
(modified_spends / actual_spends) - 1
) * 100
st.session_state["total_spends_change_abs_slider"] = st.session_state[
"total_spends_change_abs"
]
update_all_spends()
def update_spends():
st.session_state["total_spends_change_abs"] = numerize(
(1 + st.session_state["total_spends_change"] / 100)
* _scenario.actual_total_spends,
1,
)
st.session_state["total_spends_change_abs_slider"] = numerize(
(1 + st.session_state["total_spends_change"] / 100)
* _scenario.actual_total_spends,
1,
)
update_all_spends()
def update_all_spends():
"""
Updates spends for all the channels with the given overall spends change
"""
percent_change = st.session_state["total_spends_change"]
for channel_name in st.session_state["channels_list"]:
channel = st.session_state["scenario"].channels[channel_name]
current_spends = channel.actual_total_spends
modified_spends = (1 + percent_change / 100) * current_spends
st.session_state["scenario"].update(channel_name, modified_spends)
st.session_state[channel_name] = numerize(
modified_spends * channel.conversion_rate, 1
)
st.session_state[f"{channel_name}_change"] = percent_change
def extract_number_for_string(string_input):
string_input = string_input.upper()
if string_input.endswith("K"):
return float(string_input[:-1]) * 10**3
elif string_input.endswith("M"):
return float(string_input[:-1]) * 10**6
elif string_input.endswith("B"):
return float(string_input[:-1]) * 10**9
def validate_input(string_input):
pattern = r"\d+\.?\d*[K|M|B]$"
match = re.match(pattern, string_input)
if match is None:
return False
return True
def update_data_bound_min(channel_name):
"""
Updates the bounds for the given channel
"""
modified_bounds = st.session_state[f"{channel_name}_lower_bound"]
# st.session_state['scenario']['channels'][channel_name].channel_bounds_min = st.session_state[f"{channel_name}_lower_bound"]
st.session_state['scenario'].update_bounds_min(channel_name,modified_bounds)
st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_min)
# st.write(st.session_state["scenario"].channels[channel_name])
def update_data_bound_max(channel_name):
"""
Updates the bounds for the given channel
"""
modified_bounds = st.session_state[f"{channel_name}_upper_bound"]
# st.session_state['scenario']['channels'][channel_name].channel_bounds_min = st.session_state[f"{channel_name}_lower_bound"]
st.session_state['scenario'].update_bounds_max(channel_name,modified_bounds)
# st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_max)
# st.write(st.session_state["scenario"].channels[channel_name])
def update_data_by_percent(channel_name):
prev_spends = (
st.session_state["scenario"].channels[channel_name].actual_total_spends
* st.session_state["scenario"].channels[channel_name].conversion_rate
)
modified_spends = prev_spends * (
1 + st.session_state[f"{channel_name}_change"] / 100
)
st.session_state[channel_name] = numerize(modified_spends, 1)
st.session_state["scenario"].update(
channel_name,
modified_spends
/ st.session_state["scenario"].channels[channel_name].conversion_rate,
)
def update_data(channel_name):
"""
Updates the spends for the given channel
"""
if validate_input(st.session_state[channel_name]):
modified_spends = extract_number_for_string(st.session_state[channel_name])
prev_spends = (
st.session_state["scenario"].channels[channel_name].actual_total_spends
* st.session_state["scenario"].channels[channel_name].conversion_rate
)
st.session_state[f"{channel_name}_change"] = round(
100 * (modified_spends - prev_spends) / prev_spends, 2
)
st.session_state["scenario"].update(
channel_name,
modified_spends
/ st.session_state["scenario"].channels[channel_name].conversion_rate,
)
# st.write(hasattr(st.session_state["scenario"], 'update_bounds_min'))
# st.session_state['scenario'].update(channel_name, modified_spends)
# else:
# try:
# modified_spends = float(st.session_state[channel_name])
# prev_spends = st.session_state['scenario'].channels[channel_name].actual_total_spends * st.session_state['scenario'].channels[channel_name].conversion_rate
# st.session_state[f'{channel_name}_change'] = round(100*(modified_spends - prev_spends) / prev_spends,2)
# st.session_state['scenario'].update(channel_name, modified_spends/st.session_state['scenario'].channels[channel_name].conversion_rate)
# st.session_state[f'{channel_name}'] = numerize(modified_spends,1)
# except ValueError:
# st.write('Invalid input')
def select_channel_for_optimization(channel_name):
"""
Marks the given channel for optimization
"""
st.session_state["optimization_channels"][channel_name] = st.session_state[
f"{channel_name}_selected"
]
# if not all(st.session_state["optimization_channels"].values()):
# st.session_state["optimize_all_channels"] = False
def select_all_channels_for_optimization():
"""
Marks all the channel for optimization
"""
for channel_name in st.session_state["optimization_channels"].keys():
st.session_state[f"{channel_name}_selected"] = st.session_state[
"optimze_all_channels"
]
st.session_state["optimization_channels"][channel_name] = st.session_state[
"optimze_all_channels"
]
def update_penalty():
"""
Updates the penalty flag for sales calculation
"""
st.session_state["scenario"].update_penalty(st.session_state["apply_penalty"])
def reset_scenario(panel_selected, file_selected, updated_rcs):
# ## # print(st.session_state['default_scenario_dict'])
# st.session_state['scenario'] = class_from_dict(st.session_state['default_scenario_dict'])
# for channel in st.session_state['scenario'].channels.values():
# st.session_state[channel.name] = float(channel.actual_total_spends * channel.conversion_rate)
# initialize_data()
if panel_selected == "Total Market":
initialize_data(
target_file=file_selected,
panel=panel_selected,
updated_rcs=updated_rcs,
metrics=metrics_selected,
)
panel = None
else:
initialize_data(
target_file=file_selected,
panel=panel_selected,
updated_rcs=updated_rcs,
metrics=metrics_selected,
)
for channel_name in st.session_state["channels_list"]:
st.session_state[f"{channel_name}_selected"] = False
st.session_state[f"{channel_name}_change"] = 0
st.session_state["optimze_all_channels"] = False
st.session_state["total_sales_change"] = 0
update_spends()
update_sales()
reset_inputs()
# st.rerun()
def format_number(num):
if num >= 1_000_000:
return f"{num / 1_000_000:.2f}M"
elif num >= 1_000:
return f"{num / 1_000:.0f}K"
else:
return f"{num:.2f}"
def summary_plot(data, x, y, title, text_column):
fig = px.bar(
data,
x=x,
y=y,
orientation="h",
title=title,
text=text_column,
color="Channel_name",
)
# Convert text_column to numeric values
data[text_column] = pd.to_numeric(data[text_column], errors="coerce")
# Update the format of the displayed text based on magnitude
fig.update_traces(
texttemplate="%{text:.2s}",
textposition="outside",
hovertemplate="%{x:.2s}",
)
fig.update_layout(xaxis_title=x, yaxis_title="Channel Name", showlegend=False)
return fig
def s_curve(x, K, b, a, x0):
return K / (1 + b * np.exp(-a * (x - x0)))
def find_segment_value(x, roi, mroi):
start_value = x[0]
end_value = x[len(x) - 1]
# Condition for green region: Both MROI and ROI > 1
green_condition = (roi > 1) & (mroi > 1)
left_indices = np.where(green_condition)[0]
left_value = x[left_indices[0]] if left_indices.size > 0 else x[0]
right_indices = np.where(green_condition)[0]
right_value = x[right_indices[-1]] if right_indices.size > 0 else x[0]
return start_value, end_value, left_value, right_value
def calculate_rgba(
start_value, end_value, left_value, right_value, current_channel_spends
):
# Initialize alpha to None for clarity
alpha = None
# Determine the color and calculate relative_position and alpha based on the point's position
if start_value <= current_channel_spends <= left_value:
color = "yellow"
relative_position = (current_channel_spends - start_value) / (
left_value - start_value
)
alpha = 0.8 - (0.6 * relative_position) # Alpha decreases from start to end
elif left_value < current_channel_spends <= right_value:
color = "green"
relative_position = (current_channel_spends - left_value) / (
right_value - left_value
)
alpha = 0.8 - (0.6 * relative_position) # Alpha decreases from start to end
elif right_value < current_channel_spends <= end_value:
color = "red"
relative_position = (current_channel_spends - right_value) / (
end_value - right_value
)
alpha = 0.2 + (0.6 * relative_position) # Alpha increases from start to end
else:
# Default case, if the spends are outside the defined ranges
return "rgba(136, 136, 136, 0.5)" # Grey for values outside the range
# Ensure alpha is within the intended range in case of any calculation overshoot
alpha = max(0.2, min(alpha, 0.8))
# Define color codes for RGBA
color_codes = {
"yellow": "255, 255, 0", # RGB for yellow
"green": "0, 128, 0", # RGB for green
"red": "255, 0, 0", # RGB for red
}
rgba = f"rgba({color_codes[color]}, {alpha})"
return rgba
def debug_temp(x_test, power, K, b, a, x0):
# # # print("*" * 100)
# Calculate the count of bins
count_lower_bin = sum(1 for x in x_test if x <= 2524)
count_center_bin = sum(1 for x in x_test if x > 2524 and x <= 3377)
count_ = sum(1 for x in x_test if x > 3377)
# # # print(
# f"""
# lower : {count_lower_bin}
# center : {count_center_bin}
# upper : {count_}
# """
# )
# @st.cache
def plot_response_curves(summary_df_sorted):
# rows = (
# len(channels_list) // cols
# if len(channels_list) % cols == 0
# else len(channels_list) // cols + 1
# )
# rcs = st.session_state["rcs"]
# shapes = []
# fig = make_subplots(rows=rows, cols=cols, subplot_titles=channels_list)
channel_cols = [
'BroadcastTV',
'CableTV',
'Connected&OTTTV',
'DisplayProspecting',
'DisplayRetargeting',
'Video',
'SocialProspecting',
'SocialRetargeting',
'SearchBrand',
'SearchNon-brand',
'DigitalPartners',
'Audio',
'Email']
summary_df_sorted.index = summary_df_sorted["Channel_name"]
figures = [rc.response_curves(channels_list[i], summary_df_sorted["Optimized_spend"][channels_list[i]], summary_df_sorted["New_sales"][channels_list[i]]) for i in range(13)]
# for i in range()
# Display figures in a grid layout
cols = st.columns(3) # 4 columns for the grid
for idx, fig in enumerate(figures):
col = cols[idx % 3]
with col:
st.plotly_chart(fig, use_container_width=True)
# ======================================================== #
# ==================== HTML Components =================== #
# ======================================================== #
def generate_spending_header(heading):
return st.markdown(
f"""
""", unsafe_allow_html=True
)
# ======================================================== #
# =================== Session variables ================== #
# ======================================================== #
with open("config.yaml") as file:
config = yaml.load(file, Loader=SafeLoader)
st.session_state["config"] = config
authenticator = stauth.Authenticate(
config["credentials"],
config["cookie"]["name"],
config["cookie"]["key"],
config["cookie"]["expiry_days"],
config["preauthorized"],
)
st.session_state["authenticator"] = authenticator
name, authentication_status, username = authenticator.login("Login", "main")
auth_status = st.session_state.get("authentication_status")
import os
import glob
def upload_file_prospects_calc(df):
df["Prospects"] = 0
params = pd.read_excel(r"response_curves_parameters.xlsx",index_col = "channel")
param_dicts = {col: params[col].to_dict() for col in params.columns}
df.index = df.channel
# # # print(param_dicts)
for col in df.channel:
x = df["Spends"][col]
dividing_rate = 104
# st.write(x)
x_inp = ( x/dividing_rate- param_dicts["x_min"][col]) / (param_dicts["x_max"][col] - param_dicts["x_min"][col])
x_out = x_inp**param_dicts["n"][col] / (param_dicts["Kd"][col]**param_dicts["n"][col] + x_inp**param_dicts["n"][col]) #self.hill_equation(x_inp,Kd, n)
# # # print("x_out",x_out)
x_val_inv = (x_out*param_dicts["x_max"][col] + (1 - x_out) * param_dicts["x_min"][col])
sales = (x_val_inv*param_dicts["y_min"][col]/param_dicts["y_max"][col])*dividing_rate
# sales = ((x_max - x_min)*x_out + x_min)*dividing_rate
# x = (df["Spends"][col]/104 - param_dicts["x_min"][col])/(param_dicts["x_max"][col]-param_dicts["x_min"][col])
# x_out = x**param_dicts["n"][col]/(param_dicts["Kd"][col]**param_dicts["n"][col]+ x**param_dicts["n"][col])
# x_out_inv = (x_out*(param_dicts["y_max"][col]-param_dicts["y_min"][col])+param_dicts["y_min"][col])*104
df["Prospects"][col] = sales
# # # print(df)
return df
def upload_file_format(df):
# key_df = pd.DataFrame()
# key_df["channel"] = ["Broadcast TV","Cable TV","Connected & OTT TV","Display Prospecting","Display Retargeting","Video","Social Prospecting","Social Retargeting","Search Brand","Search Non-brand","Digital Partners","Audio","Email"]
# key_df["channels"] = ["BroadcastTV","CableTV","Connected&OTTTV","DisplayProspecting","DisplayRetargeting","\xa0Video","SocialProspecting","SocialRetargeting","SearchBrand","SearchNon-brand","DigitalPartners","Audio","Email"]
# df = df.merge(key_df,on = "channel", how = "inner")
# # st.dataframe(df)
# df["channel"] = df["channels"]
# df.drop(columns = ["channel"])
df1 = df.transpose()
df1.reset_index(inplace = True)
df1.columns = df1.iloc[0]
df1 = df1[1:]
df1["channel"] = pd.to_datetime('1999-08-06').date()
df1.rename(columns = {"channel":"Date"},inplace = True)
df2 = df1.rename(columns = {"Date":"Week"})
df3 =upload_file_prospects_calc(df)
df3 = df3[["Prospects"]].transpose().reset_index()
df3["index"] = pd.to_datetime('1999-08-06').date()
df3.rename(columns = {"index":"Date"},inplace = True)
df3.insert(1, 'const', [0])
# st.dataframe(df3)
# Create a buffer to hold the Excel file
import io
output = io.BytesIO()
# Write the dataframes to an Excel file
with pd.ExcelWriter(output, engine='openpyxl') as writer:
df1.to_excel(writer, index=False, sheet_name='RAW DATA MMM')
df2.to_excel(writer, index=False, sheet_name='SPEND INPUT')
df3.to_excel(writer, index=False, sheet_name='CONTRIBUTION MMM')
# Seek to the beginning of the stream
output.seek(0)
with open('Overview_data_uploaded.xlsx', 'wb') as f:
f.write(output.getvalue())
return
def get_excel_names(directory):
# Create a list to hold the final parts of the filenames
last_portions = []
# Patterns to match Excel files (.xlsx and .xls) that contain @#
patterns = [
os.path.join(directory, "*@#*.xlsx"),
os.path.join(directory, "*@#*.xls"),
]
# Process each pattern
for pattern in patterns:
files = glob.glob(pattern)
# Extracting the last portion after @# for each file
for file in files:
base_name = os.path.basename(file)
last_portion = base_name.split("@#")[-1]
last_portion = last_portion.replace(".xlsx", "").replace(
".xls", ""
) # Removing extensions
last_portions.append(last_portion)
return last_portions
def name_formating(channel_name):
# Replace underscores with spaces
name_mod = channel_name.replace("_", " ")
# Capitalize the first letter of each word
name_mod = name_mod.title()
return name_mod
@st.cache_data(show_spinner=False)
def panel_fetch(file_selected):
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
# if "Panel" in raw_data_mmm_df.columns:
# panel = list(set(raw_data_mmm_df["Panel"]))
# else:
# raw_data_mmm_df = None
# panel = None
# raw_data_mmm_df = None
panel = None
return panel
def reset_inputs():
if "total_spends_change_abs" in st.session_state:
del st.session_state.total_spends_change_abs
if "total_spends_change" in st.session_state:
del st.session_state.total_spends_change
if "total_spends_change_abs_slider" in st.session_state:
del st.session_state.total_spends_change_abs_slider
if "total_sales_change_abs" in st.session_state:
del st.session_state.total_sales_change_abs
if "total_sales_change" in st.session_state:
del st.session_state.total_sales_change
if "total_sales_change_abs_slider" in st.session_state:
del st.session_state.total_sales_change_abs_slider
st.session_state["initialized"] = False
def scenario_planner_plots2():
import plotly.graph_objects as go
from plotly.subplots import make_subplots
with open('summary_df.pkl', 'rb') as file:
summary_df_sorted = pickle.load(file)
#st.write(summary_df_sorted)
# selected_scenario= st.selectbox('Select Saved Scenarios',['S1','S2'])
summary_df_sorted=summary_df_sorted.sort_values(by=['Optimized_spend'],ascending=False)
summary_df_sorted['old_efficiency']=(summary_df_sorted['Old_sales']/summary_df_sorted['Old_sales'].sum())/(summary_df_sorted['Actual_spend']/summary_df_sorted['Actual_spend'].sum())
summary_df_sorted['new_efficiency']=(summary_df_sorted['New_sales']/summary_df_sorted['New_sales'].sum())/(summary_df_sorted['Optimized_spend']/summary_df_sorted['Optimized_spend'].sum())
summary_df_sorted['old_roi']=summary_df_sorted['Old_sales']/summary_df_sorted['Actual_spend']
summary_df_sorted['new_roi']=summary_df_sorted['New_sales']/summary_df_sorted['Optimized_spend']
total_actual_spend = summary_df_sorted['Actual_spend'].sum()
total_optimized_spend = summary_df_sorted['Optimized_spend'].sum()
actual_spend_percentage = (summary_df_sorted['Actual_spend'] / total_actual_spend) * 100
optimized_spend_percentage = (summary_df_sorted['Optimized_spend'] / total_optimized_spend) * 100
light_blue = 'rgba(0, 31, 120, 0.7)'
light_orange = 'rgba(0, 181, 219, 0.7)'
light_green = 'rgba(240, 61, 20, 0.7)'
light_red = 'rgba(250, 110, 10, 0.7)'
light_purple = 'rgba(255, 191, 69, 0.7)'
fig1 = go.Figure()
# Add actual vs optimized spend bars
fig1.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['Actual_spend'], name='Actual',
text=summary_df_sorted['Actual_spend'].apply(format_number) + ' '
# +
# ' '+
# ' (' + actual_spend_percentage.astype(int).astype(str) + '%)'
,textposition='outside',#textfont=dict(size=30),
marker_color=light_blue))
fig1.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['Optimized_spend'], name='Optimized',
text=summary_df_sorted['Optimized_spend'].apply(format_number) + ' '
# +
# ' (' + optimized_spend_percentage.astype(int).astype(str) + '%)'
,textposition='outside',#textfont=dict(size=30),
marker_color=light_orange))
fig1.update_xaxes(title_text="Channels")
fig1.update_yaxes(title_text="Spends ($)")
fig1.update_layout(
title = "Actual vs. Optimized Spends",
margin=dict(t=40, b=40, l=40, r=40)
)
# st.plotly_chart(fig1,use_container_width=True)
# Add actual vs optimized Contribution
fig2 = go.Figure()
fig2.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['Old_sales'],
name='Actual Contribution',text=summary_df_sorted['Old_sales'].apply(format_number),textposition='outside',
marker_color=light_blue,showlegend=True))
fig2.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['New_sales'],
name='Optimized Contribution',text=summary_df_sorted['New_sales'].apply(format_number),textposition='outside',
marker_color=light_orange, showlegend=True))
fig2.update_yaxes(title_text="Contribution")
fig2.update_xaxes(title_text="Channels")
fig2.update_layout(
title = "Actual vs. Optimized Contributions",
margin=dict(t=40, b=40, l=40, r=40)
# yaxis=dict(range=[0, 0.002]),
)
# st.plotly_chart(fig2,use_container_width=True)
# Add actual vs optimized Efficiency bars
fig3 = go.Figure()
summary_df_sorted_p = summary_df_sorted[summary_df_sorted['Channel_name']!="Panel"]
fig3.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'].apply(channel_name_formating), y=summary_df_sorted_p['old_efficiency'],
name='Actual Efficiency', text=summary_df_sorted_p['old_efficiency'].apply(format_number) ,textposition='outside',
marker_color=light_blue,showlegend=True))
fig3.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'].apply(channel_name_formating), y=summary_df_sorted_p['new_efficiency'],
name='Optimized Efficiency',text=summary_df_sorted_p['new_efficiency'].apply(format_number),textposition='outside' ,
marker_color=light_orange,showlegend=True))
fig3.update_xaxes(title_text="Channels")
fig3.update_yaxes(title_text="Efficiency")
fig3.update_layout(
title = "Actual vs. Optimized Efficiency",
margin=dict(t=40, b=40, l=40, r=40),
# yaxis=dict(range=[0, 0.002]),
)
# st.plotly_chart(fig3,use_container_width=True)
return fig1,fig2,fig3
def scenario_planner_plots():
with st.expander('Optimized Spends Overview'):
# if st.button('Refresh'):
# st.experimental_rerun()
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Define light colors for bars
import plotly.graph_objects as go
from plotly.subplots import make_subplots
st.empty()
#st.header('Model Result Analysis')
spends_data=pd.read_excel('Overview_data_test.xlsx')
with open('summary_df.pkl', 'rb') as file:
summary_df_sorted = pickle.load(file)
#st.write(summary_df_sorted)
# selected_scenario= st.selectbox('Select Saved Scenarios',['S1','S2'])
summary_df_sorted=summary_df_sorted.sort_values(by=['Optimized_spend'],ascending=False)
summary_df_sorted['old_efficiency']=(summary_df_sorted['Old_sales']/summary_df_sorted['Old_sales'].sum())/(summary_df_sorted['Actual_spend']/summary_df_sorted['Actual_spend'].sum())
summary_df_sorted['new_efficiency']=(summary_df_sorted['New_sales']/summary_df_sorted['New_sales'].sum())/(summary_df_sorted['Optimized_spend']/summary_df_sorted['Optimized_spend'].sum())
summary_df_sorted['old_roi']=summary_df_sorted['Old_sales']/summary_df_sorted['Actual_spend']
summary_df_sorted['new_roi']=summary_df_sorted['New_sales']/summary_df_sorted['Optimized_spend']
total_actual_spend = summary_df_sorted['Actual_spend'].sum()
total_optimized_spend = summary_df_sorted['Optimized_spend'].sum()
actual_spend_percentage = (summary_df_sorted['Actual_spend'] / total_actual_spend) * 100
optimized_spend_percentage = (summary_df_sorted['Optimized_spend'] / total_optimized_spend) * 100
light_blue = 'rgba(0, 31, 120, 0.7)'
light_orange = 'rgba(0, 181, 219, 0.7)'
light_green = 'rgba(240, 61, 20, 0.7)'
light_red = 'rgba(250, 110, 10, 0.7)'
light_purple = 'rgba(255, 191, 69, 0.7)'
fig1 = go.Figure()
# Add actual vs optimized spend bars
fig1.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['Actual_spend'], name='Actual',
text=summary_df_sorted['Actual_spend'].apply(format_number) + ' '
# +
# ' '+
# ' (' + actual_spend_percentage.astype(int).astype(str) + '%)'
,textposition='outside',#textfont=dict(size=30),
marker_color=light_blue))
fig1.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['Optimized_spend'], name='Optimized',
text=summary_df_sorted['Optimized_spend'].apply(format_number) + ' '
# +
# ' (' + optimized_spend_percentage.astype(int).astype(str) + '%)'
,textposition='outside',#textfont=dict(size=30),
marker_color=light_orange))
fig1.update_xaxes(title_text="Channels")
fig1.update_yaxes(title_text="Spends ($)")
fig1.update_layout(
title = "Actual vs. Optimized Spends",
margin=dict(t=40, b=40, l=40, r=40)
)
st.plotly_chart(fig1,use_container_width=True)
# Add actual vs optimized Contribution
fig2 = go.Figure()
fig2.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['Old_sales'],
name='Actual Contribution',text=summary_df_sorted['Old_sales'].apply(format_number),textposition='outside',
marker_color=light_blue,showlegend=True))
fig2.add_trace(go.Bar(x=summary_df_sorted['Channel_name'].apply(channel_name_formating), y=summary_df_sorted['New_sales'],
name='Optimized Contribution',text=summary_df_sorted['New_sales'].apply(format_number),textposition='outside',
marker_color=light_orange, showlegend=True))
fig2.update_yaxes(title_text="Contribution")
fig2.update_xaxes(title_text="Channels")
fig2.update_layout(
title = "Actual vs. Optimized Contributions",
margin=dict(t=40, b=40, l=40, r=40)
# yaxis=dict(range=[0, 0.002]),
)
st.plotly_chart(fig2,use_container_width=True)
# Add actual vs optimized Efficiency bars
fig3 = go.Figure()
summary_df_sorted_p = summary_df_sorted[summary_df_sorted['Channel_name']!="Panel"]
fig3.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'].apply(channel_name_formating), y=summary_df_sorted_p['old_efficiency'],
name='Actual Efficiency', text=summary_df_sorted_p['old_efficiency'].apply(format_number) ,textposition='outside',
marker_color=light_blue,showlegend=True))
fig3.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'].apply(channel_name_formating), y=summary_df_sorted_p['new_efficiency'],
name='Optimized Efficiency',text=summary_df_sorted_p['new_efficiency'].apply(format_number),textposition='outside' ,
marker_color=light_orange,showlegend=True))
fig3.update_xaxes(title_text="Channels")
fig3.update_yaxes(title_text="Efficiency")
fig3.update_layout(
title = "Actual vs. Optimized Efficiency",
margin=dict(t=40, b=40, l=40, r=40),
# yaxis=dict(range=[0, 0.002]),
)
st.plotly_chart(fig3,use_container_width=True)
return fig1,fig2,fig3
def give_demo():
def get_file_bytes(file_path):
with open(file_path, 'rb') as file:
return file.read()
# Path to the existing Excel file
file_path = 'input_data_example.xlsx'
# Create a download button
st.download_button(
label="Download Input File Format",
data=get_file_bytes(file_path),
file_name=file_path,
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
if auth_status == True:
authenticator.logout("Logout", "main")
st.header("Scenario Planner")
data_selected = st.selectbox(
"Select base data for optimisation", options=["Optimise Actual Spends", "Optimise Uploaded Spends"],
key = "data_upload_key",index = 1)
# st.text_input("")
# Response Metrics
directory = "metrics_level_data"
metrics_list = get_excel_names(directory)
# metrics_selected = col1.selectbox(
# "Response Metrics",
# metrics_list,
# format_func=name_formating,
# index=0,
# on_change=reset_inputs,
# )
metrics_selected='prospects'
# Target
target = name_formating(metrics_selected)
# file_selected = (
# f"Overview_data_test_panel@#{metrics_selected}.xlsx"
# )
file_selected = None
if data_selected == "Optimise Uploaded Spends":
give_demo()
st.write("Select a file to upload")
uploaded_file = st.file_uploader("Choose an Excel file", type=["xlsx", "xls"])
# give_demo()
if uploaded_file:
try:
# Read the Excel file using pandas
df = pd.read_excel(uploaded_file, engine='openpyxl')
upload_file_format(df)
file_selected = "Overview_data_uploaded.xlsx"
# initialize_data(
# target_file=file_selected,
# panel="Total Market",
# updated_rcs=None,
# metrics=metrics_selected,
# )
except Exception as e:
st.error(f"Error reading the file: {e}")
elif data_selected == "Optimise Actual Spends":
file_selected = (
f"Overview_data_test_panel@#{metrics_selected}.xlsx"
)
# initialize_data(
# target_file=file_selected,
# panel="Total Market",
# updated_rcs=None,
# metrics=metrics_selected,
# )
else :
st.write("")
if file_selected:
st.session_state['file_selected']=file_selected
# Panel List
panel_list = panel_fetch(file_selected)
# # Panel Selected
# panel_selected = st.selectbox(
# "Markets",
# ["Total Market"] + panel_list,
# index=0,
# on_change=reset_inputs,
# )
# st.write(panel_selected)
panel_selected = "Total Market"
st.session_state['selected_markets']=panel_selected
if "update_rcs" in st.session_state:
updated_rcs = st.session_state["update_rcs"]
else:
updated_rcs = None
if "first_time" not in st.session_state:
st.session_state["first_time"] = True
# Check if state is initiaized
is_state_initiaized = st.session_state.get("initialized", False)
if not is_state_initiaized or st.session_state["first_time"]:
initialize_data(
target_file=file_selected,
panel=panel_selected,
updated_rcs=updated_rcs,
metrics=metrics_selected,
)
st.session_state["initialized"] = True
st.session_state["first_time"] = False
save_scenario("current scenario")
# initialize_data(
# panel=panel_selected,
# target_file=file_selected,
# updated_rcs=updated_rcs,
# metrics=metrics_selected,
# )
# st.session_state["initialized"] = True
# st.session_state["first_time"] = False
# Channels List
channels_list = st.session_state["channels_list"]
# ======================================================== #
# ========================== UI ========================== #
# ======================================================== #
# # # print(list(st.session_state.keys()))
main_header = st.columns((2, 2))
sub_header = st.columns((1, 1, 1, 1))
_scenario = st.session_state["scenario"]
if "total_spends_change" not in st.session_state:
st.session_state.total_spends_change = 0
if "total_sales_change" not in st.session_state:
st.session_state.total_sales_change = 0
if "total_spends_change_abs" not in st.session_state:
st.session_state["total_spends_change_abs"] = numerize(
_scenario.actual_total_spends, 1
)
# st.write(_scenario.actual_total_sales)
if "total_sales_change_abs" not in st.session_state:
st.session_state["total_sales_change_abs"] = numerize(
_scenario.actual_total_sales, 1
)
if "total_spends_change_abs_slider" not in st.session_state:
st.session_state.total_spends_change_abs_slider = numerize(
_scenario.actual_total_spends, 1
)
if "total_sales_change_abs_slider" not in st.session_state:
st.session_state.total_sales_change_abs_slider = numerize(
_scenario.actual_total_sales, 1
)
if "lower_bound_key" not in st.session_state:
st.session_state["lower_bound_key"] = 10
if "upper_bound_key" not in st.session_state:
st.session_state["upper_bound_key"] = 100
# st.write(_scenario.modified_total_sales)
header_df = pd.DataFrame(index=["Actual","Simulated","Change","Percent Change"],columns=["Spends","Prospects"])
header_df["Spends"]["Actual"] = format_numbers(_scenario.actual_total_spends)
header_df["Spends"]["Simulated"] = format_numbers(_scenario.modified_total_spends)
header_df["Spends"]["Change"] = format_numbers(_scenario.delta_spends) #_scenario.modified_total_spends -_scenario.actual_total_spends
header_df["Spends"]["Percent Change"] = numerize(100*(_scenario.delta_spends/_scenario.actual_total_spends))+'%'
header_df["Prospects"]["Actual"] = format_numbers_f(float(_scenario.actual_total_sales))
header_df["Prospects"]["Simulated"] = format_numbers_f(float(_scenario.modified_total_sales))
header_df["Prospects"]["Change"] = format_numbers_f(_scenario.delta_sales)
header_df["Prospects"]["Percent Change"] = numerize(100*(_scenario.delta_sales/_scenario.actual_total_sales),1)+'%'
st.markdown("""
""", unsafe_allow_html=True)
_columns = st.columns((1, 1, 1, 1, 1))
st.markdown(
"""
""",
unsafe_allow_html=True
)
with _columns[0]:
st.markdown(f'{"Metrics"}
', unsafe_allow_html=True)
# generate_spending_header("Metric")
with _columns[1]:
st.markdown(f'{"Actual"}
', unsafe_allow_html=True)
# generate_spending_header("Actual")
with _columns[2]:
st.markdown(f'{"Simulated"}
', unsafe_allow_html=True)
# generate_spending_header("Optimised")
with _columns[3]:
st.markdown(f'{"Change"}
', unsafe_allow_html=True)
# generate_spending_header("Change")
with _columns[4]:
st.markdown(f'{"Change Percent"}
', unsafe_allow_html=True)
# generate_spending_header("Change Percent")
st.markdown("""
""", unsafe_allow_html=True)
_columns = st.columns((1, 1, 1, 1, 1))
with _columns[0]:
st.markdown(""" Spends
""",unsafe_allow_html=True)
# st.write("Spends")
with _columns[1]:
st.markdown(f"""{header_df["Spends"]["Actual"]}
""",unsafe_allow_html=True)
# st.metric(label="", value=header_df["Spends"]["Actual"])
with _columns[2]:
st.markdown(f"""{header_df["Spends"]["Simulated"]}
""",unsafe_allow_html=True)
if _scenario.delta_spends < 0:
st.markdown(
"""
""",
unsafe_allow_html=True
)
else:
st.markdown(
"""
""",
unsafe_allow_html=True
)
# st.metric(label="", value=header_df["Spends"]["Simulated"])
with _columns[3]:
# Apply custom styles to text
st.markdown(f'{header_df["Spends"]["Change"]}
', unsafe_allow_html=True)
with _columns[4]:
# Apply custom styles to text
# st.markdown(f'', unsafe_allow_html=True)
st.markdown(f'{header_df["Spends"]["Percent Change"]}
', unsafe_allow_html=True)
st.markdown(
"""
""",
unsafe_allow_html=True,
)
_columns = st.columns((1, 1, 1, 1, 1))
with _columns[0]:
# st.header("Prospects")
st.markdown(""" Prospects
""",unsafe_allow_html=True)
with _columns[1]:
st.markdown(f"""{header_df["Prospects"]["Actual"]}
""",unsafe_allow_html=True)
# st.metric(label="", value=header_df["Prospects"]["Actual"])
with _columns[2]:
st.markdown(f"""{header_df["Prospects"]["Simulated"]}
""",unsafe_allow_html=True)
# st.metric(label="", value=header_df["Prospects"]["Simulated"])
if _scenario.delta_sales >= 0:
st.markdown(
"""
""",
unsafe_allow_html=True
)
else:
st.markdown("""""",unsafe_allow_html=True)
with _columns[3]:
# Apply custom styles to text
st.markdown(f'{header_df["Prospects"]["Change"]}
', unsafe_allow_html=True)
# st.markdown(f'{st.metric(label="", value=header_df["Prospects"]["Change"])}
', unsafe_allow_html=True)
# st.markdown(f'{header_df["Prospects"]["Change"]}
', unsafe_allow_html=True)
with _columns[4]:
# st.markdown(f'', unsafe_allow_html=True)
# Apply custom styles to text
st.markdown(f'{header_df["Prospects"]["Percent Change"]}
', unsafe_allow_html=True)
st.markdown(
"""
""",
unsafe_allow_html=True,
)
_columns = st.columns((1, 1, 1, 1, 1))
ef1 = (_scenario.actual_total_spends/_scenario.actual_total_sales)
ef2 = (_scenario.modified_total_spends/_scenario.modified_total_sales)
with _columns[0]:
st.markdown("""Cost Per Prospect
""",unsafe_allow_html=True)
# st.header("Cost Per Prospect")
with _columns[1]:
st.markdown(f"""{'$ '+numerize(ef1,0)}
""",unsafe_allow_html=True)
# st.metric(label="", value='$ '+numerize(ef1,0))
with _columns[2]:
st.markdown(f"""{'$ '+numerize(ef2,0)}
""",unsafe_allow_html=True)
# st.metric(label="", value='$ '+numerize(ef2,0))
if ef2 <= ef1:
st.markdown(
"""
""",
unsafe_allow_html=True
)
else:
st.markdown(
"""
""",
unsafe_allow_html=True
)
with _columns[3]:
# Apply custom styles to text
st.markdown(f'{"$ "+numerize(ef2-ef1,0)}
', unsafe_allow_html=True)
# st.markdown(f'{st.metric(label="", value=header_df["Prospects"]["Change"])}
', unsafe_allow_html=True)
# st.markdown(f'{header_df["Prospects"]["Change"]}
', unsafe_allow_html=True)
with _columns[4]:
# st.markdown(f'', unsafe_allow_html=True)
# Apply custom styles to text
st.markdown(f'{round((ef2-ef1)/ef1*100,2)}%
', unsafe_allow_html=True)
st.markdown("""
""",unsafe_allow_html=True)
# st.markdown("""
""", unsafe_allow_html=True)
# header_df.reset_index(inplace=True)
# # Function to color the index
# def highlight_index(s):
# return ['background-color: lightblue' for _ in s]
# # Function to color the header
# def highlight_header(s):
# return ['background-color: lightgreen' for _ in s]
# # Applying the styles
# styled_df = header_df.style \
# .apply(highlight_index, axis=0, subset=pd.IndexSlice[:, :]) \
# .set_table_styles({
# 'A': [{'selector': 'th', 'props': [('background-color', 'lightgreen')]}],
# 'B': [{'selector': 'th', 'props': [('background-color', 'lightgreen')]}],
# 'C': [{'selector': 'th', 'props': [('background-color', 'lightgreen')]}]
# })
# # Function to apply arrows based on value
# def format_arrows(val):
# if val > 0:
# return '▲' # Green up arrow
# elif val < 0:
# return '▼' # Red down arrow
# return '' # No arrow for zero
# # Function to format specific rows and exclude the first column
# def apply_row_formatting(df, rows):
# def format_cell(val, row_idx, col_idx):
# if row_idx in rows and col_idx > 0: # Exclude the first column (col_idx > 0)
# return format_arrows(val)
# return '' # No formatting for other cells
# return df.style.apply(lambda x: [format_cell(val, i, col) for i, (val, col) in enumerate(zip(x, range(len(x))))], axis=1)
# # Apply formatting to 3rd and 4th rows (index 2 and 3)
# styled_df = apply_row_formatting(header_df, [2, 3])
# st.markdown(styled_df.to_html(escape=False), unsafe_allow_html=True)
# st.markdown(header_df.style.set_table_styles
# ([{'selector': 'th',
# 'props': [('background-color', '#D3D3D3'),
# ('font-size', '25px')]},
# {
# 'selector' : 'td:first-child',
# 'props' : [('background-color', '#D3D3D3'),
# ('font-size', '25px')]
# }
# ,
# {'selector': 'tbody td',
# 'props': [('font-size', '20px')]}
# ]).to_html(),unsafe_allow_html=True)
# styled_df = header_df.style.apply(highlight_first_col, axis=1)
# st.table(styled_df)
# with main_header[0]:
# st.subheader("Actual")
# with main_header[-1]:
# st.subheader("Simulated")
# with sub_header[0]:
# st.metric(label="Spends", value=format_numbers(_scenario.actual_total_spends))
# with sub_header[1]:
# st.metric(
# label=target,
# value=format_numbers_f(
# float(_scenario.actual_total_sales)
# ),
# )
# with sub_header[2]:
# st.metric(
# label="Spends",
# value=format_numbers(_scenario.modified_total_spends),
# delta=numerize(_scenario.delta_spends, 1),
# )
# with sub_header[3]:
# st.metric(
# label=target,
# value=format_numbers_f(
# float(_scenario.modified_total_sales)
# ),
# delta=numerize(_scenario.delta_sales, 1),
# )
with st.expander("Channel Spends Simulator", expanded=True):
_columns1 = st.columns((1.5, 1.5, 1,1))
with _columns1[0]:
optimization_selection = st.selectbox(
"Optimize", options=["Media Spends", target], key="optimization_key"
)
with _columns1[1]:
# st.markdown("#")
# if st.checkbox(
# label="Optimize all Channels",
# key="optimze_all_channels",
# value=False,
# # on_change=select_all_channels_for_optimization,
# ):
# select_all_channels_for_optimization()
st.checkbox(
label="Optimize all Channels",
key="optimze_all_channels",
value=False,
on_change=select_all_channels_for_optimization,
)
with _columns1[2]:
#
optimize_placeholder = st.empty()
with _columns1[3]:
# st.markdown("#")
st.button(
"Reset",
on_click=reset_scenario,
args=(panel_selected, file_selected, updated_rcs),
# use_container_width=True,
)
# st.write(target)
_columns2 = st.columns((2, 2, 2,2))
if st.session_state["optimization_key"] == "Media Spends":
# st.write(overall_lower_bound,overall_upper_bound)
with _columns2[2]:
overall_lower_bound = st.number_input(
"Overall Lower Bound for Spends",
value = 50.0,
key = "overall_lower_bound",
# on_change=partial(update_data_bound_min_overall)
)
with _columns2[3]:
overall_upper_bound = st.number_input(
"Overall Upper Bound for Spends",
value = 50.0,
key = "overall_upper_bound",
# on_change=partial(update_data_bound_max_overall)
)
min_value = round(_scenario.actual_total_spends * (1-overall_lower_bound/100))
max_value = round(_scenario.actual_total_spends * (1-overall_upper_bound/100))
with _columns2[0]:
spend_input = st.text_input(
"Absolute",
key="total_spends_change_abs",
# label_visibility="collapsed",
on_change=update_all_spends_abs,
)
# overall_lower_bound = 50.0
# overall_upper_bound = 50.0
with _columns2[1]:
st.number_input(
"Percent Change",
key="total_spends_change",
min_value= -1*overall_lower_bound,
max_value= overall_upper_bound,
step=0.01,
value=0.00,
on_change=update_spends,
)
st.session_state["total_spends_change_abs_slider_options"] = [
numerize(value, 1)
for value in range(min_value, max_value + 1, int(1e4))
]
# st.select_slider(
# "Absolute Slider",
# options=st.session_state["total_spends_change_abs_slider_options"],
# key="total_spends_change_abs_slider",
# on_change=update_all_spends_abs_slider,
# )
elif st.session_state["optimization_key"] == target:
# st.write(target)
with _columns2[0]:
sales_input = st.text_input(
"Absolute",
key="total_sales_change_abs",
on_change=update_sales_abs,
)
with _columns2[1]:
st.number_input(
"Percent Change",
key="total_sales_change",
min_value=-50.00,
max_value=50.00,
step=0.01,
value=0.00,
on_change=update_sales,
)
with _columns2[2]:
overall_lower_bound = st.number_input(
"Overall Lower Bound for Spends",
value = 50
)
with _columns2[3]:
overall_upper_bound = st.number_input(
"Overall Upper Bound for Spends",
value = 50
)
min_value = round(_scenario.actual_total_sales * (1-overall_lower_bound/100))
max_value = round(_scenario.actual_total_sales * (1+overall_upper_bound/100))
# st.write(min_value)
# st.write(max_value)
# for value in range(min_value, max_value + 1, int(100)):
# st.write(numerize(value, 1))
# st.session_state["total_sales_change_abs_slider_options"] = [
# numerize(value, 1)
# for value in range(min_value, max_value + 1, int(100))
# ]
# st.select_slider(
# "Absolute Slider",
# options=st.session_state["total_sales_change_abs_slider_options"],
# key="total_sales_change_abs_slider",
# on_change=update_sales_abs_slider,
# # value=numerize(min_value, 1)
# )
if (
not st.session_state["allow_sales_update"]
and optimization_selection == target
):
st.warning("Invalid Input")
if (
not st.session_state["allow_spends_update"]
and optimization_selection == "Media Spends"
):
st.warning("Invalid Input")
status_placeholder = st.empty()
# if optimize_placeholder.button("Optimize", use_container_width=True):
# optimize(st.session_state["optimization_key"], status_placeholder)
# st.rerun()
optimize_placeholder.button(
"Optimize",
on_click=optimize,
args=(st.session_state["optimization_key"], status_placeholder),
# use_container_width=True,
)
st.markdown("""
""", unsafe_allow_html=True)
_columns = st.columns((1.5,2.5,2,2, 1))
with _columns[0]:
generate_spending_header("Channel")
with _columns[1]:
generate_spending_header("Spends Input")
with _columns[2]:
generate_spending_header("Spends")
with _columns[3]:
generate_spending_header(target)
with _columns[4]:
generate_spending_header("Optimize")
st.markdown("""
""", unsafe_allow_html=True)
if "acutual_predicted" not in st.session_state:
st.session_state["acutual_predicted"] = {
"Channel_name": [],
"Actual_spend": [],
"Optimized_spend": [],
"Delta": [],
"New_sales":[],
"Old_sales":[]
}
for i, channel_name in enumerate(channels_list):
# st.write(channel_name)
_channel_class = st.session_state["scenario"].channels[channel_name]
# st.write(st.session_state["scenario"].channels[channel_name])
# st.write(st.session_state["scenario"].channels[channel_name].actual_total_sales)
# st.write(st.session_state["scenario"].channels[channel_name].actual_total_spends)
# st.write(st.session_state["scenario"].channels[channel_name].modified_total_sales)
# st.write(st.session_state["scenario"].channels[channel_name].modified_total_spends)
# st.write(st.session_state["scenario"].channels[channel_name].bounds)
# st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_min)
_columns = st.columns((1.5,2.5,2,2, 1))
response_curve_params = pd.read_excel("response_curves_parameters.xlsx",index_col = "channel")
param_dicts = {col: response_curve_params[col].to_dict() for col in response_curve_params.columns}
with _columns[0]:
st.write(channel_name_formating(channel_name))
bin_placeholder = st.container()
with _columns[1]:
channel_bounds = _channel_class.bounds
# st.write(channel_bounds)
channel_spends = float(_channel_class.actual_total_spends)
channel_bounds_min = float(_channel_class.channel_bounds_min)
channel_bounds_max = float(_channel_class.channel_bounds_max)
min_value = float((1 - channel_bounds_min / 100) * channel_spends)
max_value = float((1 + channel_bounds_max / 100) * channel_spends)
# st.write(channel_spends)
# st.write(min_value)
# st.write(max_value)
### # print(st.session_state[channel_name])
# st.write(_channel_class.channel_bounds_min,channel_bounds_min)
# st.write(_channel_class.channel_bounds_max,channel_bounds_max)
_columns_min = st.columns(2)
with _columns_min[0]:
spend_input = st.text_input(
"Absolute",
key=channel_name,
# label_visibility="collapsed",
on_change=partial(update_data, channel_name),
)
channel_name_lower_bound = f"{channel_name}_lower_bound"
if channel_name_lower_bound not in st.session_state:
st.session_state[channel_name_lower_bound] = str(round(param_dicts["x_min"][channel_name]*10400/param_dicts["current_spends"][channel_name]))
# st.write(st.session_state[channel_name_lower_bound])
channel_bounds_min = st.text_input(
"Lower Bound Percentage",
key = channel_name_lower_bound,
on_change=partial(update_data_bound_min,channel_name)
)
# st.write(st.session_state[channel_name_lower_bound])
if not validate_input(spend_input):
st.error("Invalid input")
channel_name_current = f"{channel_name}_change"
with _columns_min[1]:
st.number_input(
"Percent Change",
key=channel_name_current,
step=1.00,value=0.00,
on_change=partial(update_data_by_percent, channel_name),
)
channel_name_upper_bound = f"{channel_name}_upper_bound"
if channel_name_upper_bound not in st.session_state:
st.session_state[channel_name_upper_bound] = str(100)
channel_bounds_max = st.text_input(
"Upper Bound Percentage",
key = channel_name_upper_bound,
on_change=partial(update_data_bound_max,channel_name)
)
with _columns[2]:
# spends
current_channel_spends = float(
_channel_class.modified_total_spends
* _channel_class.conversion_rate
)
actual_channel_spends = float(
_channel_class.actual_total_spends * _channel_class.conversion_rate
)
spends_delta = float(
_channel_class.delta_spends * _channel_class.conversion_rate
)
st.session_state["acutual_predicted"]["Channel_name"].append(
channel_name
)
st.session_state["acutual_predicted"]["Actual_spend"].append(
actual_channel_spends
)
st.session_state["acutual_predicted"]["Optimized_spend"].append(
current_channel_spends
)
st.session_state["acutual_predicted"]["Delta"].append(spends_delta)
_spend_cols = st.columns(2)
with _spend_cols[0]:
# st.write("Actual")
st.markdown(f' Actual
{format_numbers(actual_channel_spends)}
', unsafe_allow_html=True)
# st.metric(
# label="Actual Spends",
# value=format_numbers(actual_channel_spends),
# # delta=numerize(spends_delta, 1),
# # label_visibility="collapsed",
# )
# st.write("Actual")
st.markdown(f' Change
{format_numbers(spends_delta)}
', unsafe_allow_html=True)
# st.markdown(f'{format_numbers(spends_delta)}%
', unsafe_allow_html=True)
# st.metric(
# label="Change",
# value= format_numbers_f(spends_delta),
# delta=numerize(spends_delta, 1),
# # label_visibility="collapsed",
# )
with _spend_cols[1]:
st.markdown(f' Simulated
{format_numbers(current_channel_spends)}
', unsafe_allow_html=True)
st.markdown(f'Percent
{numerize(( spends_delta/actual_channel_spends)*100,0) +"%"}
', unsafe_allow_html=True)
# st.metric(
# label="Simulated Spends",
# value=format_numbers(current_channel_spends),
# # delta=numerize(spends_delta, 1),
# # label_visibility="collapsed",
# )
# st.metric(
# label="Percent Change",
# value= numerize(( spends_delta/actual_channel_spends)*100,0) +"%",
# delta=numerize(spends_delta, 1),
# # label_visibility="collapsed",
# )
with _columns[3]:
# sales
current_channel_sales = float(_channel_class.modified_total_sales)
actual_channel_sales = float(_channel_class.actual_total_sales)
sales_delta = float(_channel_class.delta_sales)
st.session_state["acutual_predicted"]["Old_sales"].append(actual_channel_sales)
st.session_state["acutual_predicted"]["New_sales"].append(current_channel_sales)
#st.write(actual_channel_sales)
_prospect_cols = st.columns(2)
with _prospect_cols[0]:
# st.write("Actual")
st.markdown(f' Actual
{format_numbers_f(actual_channel_sales)}
', unsafe_allow_html=True)
st.markdown(f' Change
{format_numbers_f(sales_delta)}
', unsafe_allow_html=True)
# st.metric(
# # target,
# label="Actual Prospects",
# value= format_numbers_f(actual_channel_sales),
# # delta=numerize(sales_delta, 1),
# # label_visibility="collapsed",
# )
# st.metric(
# label="Change",
# value= format_numbers_f(_channel_class.delta_sales),
# delta=numerize(sales_delta, 1),
# # label_visibility="collapsed",
# )
with _prospect_cols[1]:
st.markdown(f' Simulated
{format_numbers_f(current_channel_sales)}
', unsafe_allow_html=True)
st.markdown(f'Percent
{numerize(( _channel_class.delta_sales/actual_channel_sales)*100,0) +"%"}
', unsafe_allow_html=True)
# st.metric(
# label="Simulated Prospects",
# value= format_numbers_f(current_channel_sales),
# # delta=numerize(sales_delta, 1),
# # label_visibility="collapsed",
# )
# st.metric(
# label="Percent Change",
# value= numerize((_channel_class.delta_sales/actual_channel_sales)*100,0) +"%",
# delta=numerize(sales_delta, 1),
# # label_visibility="collapsed",
# )
with _columns[4]:
# if st.checkbox(
# label="select for optimization",
# key=f"{channel_name}_selected",
# value=False,
# # on_change=partial(select_channel_for_optimization, channel_name),
# label_visibility="collapsed",
# ):
# select_channel_for_optimization(channel_name)
st.checkbox(
label="select for optimization",
key=f"{channel_name}_selected",
value=False,
on_change=partial(select_channel_for_optimization, channel_name),
label_visibility="collapsed",
)
st.markdown(
"""
""",
unsafe_allow_html=True,
)
# Bins
col = channels_list[i]
x_actual = st.session_state["scenario"].channels[col].actual_spends
x_modified = st.session_state["scenario"].channels[col].modified_spends
# x_modified_total = 0
# for c in channels_list:
# # st.write(c)
# # st.write(st.session_state["scenario"].channels[c].modified_spends)
# x_modified_total = x_modified_total + st.session_state["scenario"].channels[c].modified_spends.sum()
# st.write(x_modified_total)
x_total = x_modified.sum()
power = np.ceil(np.log(x_actual.max()) / np.log(10)) - 3
updated_rcs_key = f"{metrics_selected}#@{panel_selected}#@{channel_name}"
# if updated_rcs and updated_rcs_key in list(updated_rcs.keys()):
# K = updated_rcs[updated_rcs_key]["K"]
# b = updated_rcs[updated_rcs_key]["b"]
# a = updated_rcs[updated_rcs_key]["a"]
# x0 = updated_rcs[updated_rcs_key]["x0"]
# else:
# K = st.session_state["rcs"][col]["K"]
# b = st.session_state["rcs"][col]["b"]
# a = st.session_state["rcs"][col]["a"]
# x0 = st.session_state["rcs"][col]["x0"]
# x_plot = np.linspace(0, 5 * x_actual.sum(), 200)
# # Append current_channel_spends to the end of x_plot
# x_plot = np.append(x_plot, current_channel_spends)
# x, y, marginal_roi = [], [], []
# for x_p in x_plot:
# x.append(x_p * x_actual / x_actual.sum())
# for index in range(len(x_plot)):
# y.append(s_curve(x[index] / 10**power, K, b, a, x0))
# for index in range(len(x_plot)):
# marginal_roi.append(
# a * y[index] * (1 - y[index] / np.maximum(K, np.finfo(float).eps))
# )
# x = (
# np.sum(x, axis=1)
# * st.session_state["scenario"].channels[col].conversion_rate
# )
# y = np.sum(y, axis=1)
# marginal_roi = (
# np.average(marginal_roi, axis=1)
# / st.session_state["scenario"].channels[col].conversion_rate
# )
# roi = y / np.maximum(x, np.finfo(float).eps)
# # roi = (y/np.sum(y))/(x/np.sum(x))
# # st.write(x)
# # st.write(y)
# # st.write(roi)
# # st.write(roi[-1])
# roi_current, marginal_roi_current = roi[-1], marginal_roi[-1]
# x, y, roi, marginal_roi = (
# x[:-1],
# y[:-1],
# roi[:-1],
# marginal_roi[:-1],
# ) # Drop data for current spends
# # roi_current =
# start_value, end_value, left_value, right_value = find_segment_value(
# x,
# roi,
# marginal_roi,
# )
#st.write(roi_current)
# rgba = calculate_rgba(
# start_value,
# end_value,
# left_value,
# right_value,
# current_channel_spends,
# )
# # # print(st.session_state["acutual_predicted"])
summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
# st.dataframe(summary_df)
summary_df.drop_duplicates(subset="Channel_name", keep="last", inplace=True)
# st.dataframe(summary_df)
summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
summary_df_sorted["Delta_percent"] = np.round(
((summary_df_sorted["Optimized_spend"] / summary_df_sorted["Actual_spend"]) - 1)
* 100,
2,
)
summary_df_sorted=summary_df_sorted.sort_values(by=['Optimized_spend'],ascending=False)
summary_df_sorted['old_efficiency']=(summary_df_sorted['Old_sales']/summary_df_sorted['Old_sales'].sum())/(summary_df_sorted['Actual_spend']/summary_df_sorted['Actual_spend'].sum())
summary_df_sorted['new_efficiency']=(summary_df_sorted['New_sales']/summary_df_sorted['New_sales'].sum())/(summary_df_sorted['Optimized_spend']/summary_df_sorted['Optimized_spend'].sum())
a = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['new_efficiency'][0]
b = (summary_df_sorted[summary_df_sorted['Channel_name']== col]).reset_index()['old_efficiency'][0]
# st.write(a)
with bin_placeholder:
if a> 1:
fill_color_box = "#6bbf6b"
elif a <1:
fill_color_box = "#ff6868"
else:
fill_color_box = "#ff6868"
st.markdown(
f"""
Simulated Efficiency: {round(a,2)} Actual Efficiency: {round(b,2)}
""",
unsafe_allow_html=True,
)
# Simulated Efficiency: {round(a,2)} Actual Efficiency: {round(b,2)}
#
with st.expander("See Response Curves", expanded=True):
fig = plot_response_curves(summary_df_sorted)
# st.plotly_chart(rc.response_curves(col))
# st.plotly_chart(fig, use_container_width=True)
summary_df = pd.DataFrame(st.session_state["acutual_predicted"])
# st.dataframe(summary_df)
summary_df.drop_duplicates(subset="Channel_name", keep="last", inplace=True)
# st.dataframe(summary_df)
summary_df_sorted = summary_df.sort_values(by="Delta", ascending=False)
summary_df_sorted["Delta_percent"] = np.round(
((summary_df_sorted["Optimized_spend"] / summary_df_sorted["Actual_spend"]) - 1)
* 100,
2,
)
with open("summary_df.pkl", "wb") as f:
pickle.dump(summary_df_sorted, f)
# st.dataframe(summary_df_sorted)
# ___columns=st.columns(3)
# with ___columns[2]:
# fig=summary_plot(summary_df_sorted, x='Delta_percent', y='Channel_name', title='Delta', text_column='Delta_percent')
# st.plotly_chart(fig,use_container_width=True)
# with ___columns[0]:
# fig=summary_plot(summary_df_sorted, x='Actual_spend', y='Channel_name', title='Actual Spend', text_column='Actual_spend')
# st.plotly_chart(fig,use_container_width=True)
# with ___columns[1]:
# fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='Planned Spend', text_column='Optimized_spend')
# st.plotly_chart(fig,use_container_width=True)
scenario_planner_plots()
with st.expander ("View Forecasted spends"):
# st.write("Select Time Period")
options = ["Next Month","Next Quarter","Next Year","Custom Time Period"]
# # Create the radio button
forecast_btn_op = st.radio("Select Time Period", options)
# List of 12 months
months_start = ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"]
years_start = range(2022,2025)
months_end = ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"]
years_end = range(2022,2025)
if forecast_btn_op == "Custom Time Period":
col1, col2, col3 = st.columns([1,1,0.75])
with col1:
from datetime import date
st.write ("Select Start Time Period")
sc1,sc2 = st.columns([1,1])
with sc1:
# Create a dropdown (selectbox) for months
start_date_mon = st.selectbox("Select Start Month:", months_start)
with sc2:
start_date_year = st.selectbox("Select Start Year:", years_start,index=2)
start_date1 = date(start_date_year, months_start.index(start_date_mon)+1, 1)
# - relativedelta(years=1)
# st.write(start_date1)
# default_Month = "January"
# start_date_mon = st.text_input("Select Start Month: ",value=default_Month)
# default_Year = 2024
# start_date_year = st.number_input("Select Start Year: ",value=default_Year)
with col2:
st.write ("Select End Time Period")
ec1,ec2 = st.columns([1,1])
with ec1:
end_date_mon = st.selectbox("Select End Month:", months_end,index=1)
with ec2:
end_date_year = st.selectbox("Select End Year:", years_end,index=2)
end_date1 = date(end_date_year, months_end.index(end_date_mon)+1, 1)+ relativedelta(months=1) - relativedelta(days=1)
# - relativedelta(years=1)
# st.write(end_date1)
# default_Month = "February"
# end_date_mon = st.text_input("Select End Month: ",value=default_Month)
# default_Year = 2024
# end_date_year = st.number_input("Select End Year: ",value=default_Year)
# end_date1 = st.date_input("Select End Date: ",value=default_date) - relativedelta(years=1)
elif forecast_btn_op == 'Next Month':
# current_date = datetime.now()
# start_date1 = current_date- relativedelta(years=1)
# end_date1 = current_date + relativedelta(months=1)- relativedelta(years=1)
start_date1,end_date1 = first_day_of_next_month(datetime.now())
# start_date1 = start_date1- relativedelta(years=1)
# end_date1 = end_date1 - relativedelta(years=1)
elif forecast_btn_op == 'Next Quarter':
# current_date = datetime.now()
# start_date1 = current_date- relativedelta(years=1)
# end_date1 = current_date + relativedelta(months = 3)- relativedelta(years=1)
start_date1,end_date1 = first_day_of_next_quarter(datetime.now())
# start_date1 = start_date1- relativedelta(years=1)
# end_date1 = end_date1 - relativedelta(years=1)
elif forecast_btn_op == 'Next Year':
# current_date = datetime.now()
# start_date1 = current_date- relativedelta(years=1)
# end_date1 = current_date + relativedelta(months = 12)- relativedelta(years=1)
start_date1,end_date1 = first_day_of_next_year(datetime.now())
# start_date1 = start_date1- relativedelta(years=1)
# end_date1 = end_date1 - relativedelta(years=1)
st.write(f"Forecasted Spends Time Period : {start_date1.strftime('%m-%d-%Y')} to {end_date1.strftime('%m-%d-%Y')}")
if end_date1 < start_date1 :
st.error("End date cannot be less than start date")
forecasted_table_df2 = pd.DataFrame()
try:
st.write("Forecasted Spends wrt. Channels ")
forecasted_table_df = sf.scenario_spend_forecasting(summary_df_sorted,start_date1- relativedelta(years=1),end_date1- relativedelta(years=1))
forecasted_table_df2 = sf.scenario_spend_forecasting2(summary_df_sorted,start_date1- relativedelta(years=1),end_date1- relativedelta(years=1))
st.dataframe(forecasted_table_df)
st.write("Monthly Breakdown Of Forecasted Spends wrt. Channels ")
st.dataframe(forecasted_table_df2)
except:
st.warning("Please make sure the base data is updated")
def save_report_forecast(forecasted_table_df,forecasted_table_df2):
# Convert the DataFrame to an Excel file in memory
excel_file = BytesIO()
with pd.ExcelWriter(excel_file, engine='openpyxl') as writer:
forecasted_table_df.to_excel(writer, index=True, sheet_name='Forecasted Spends')
forecasted_table_df2.to_excel(writer, sheet_name='Monthly Breakdown',index = True)
# Seek to the beginning of the BytesIO buffer
excel_file.seek(0)
return excel_file
st.subheader("Download Report")
report_name = st.text_input(
"Report name",
key="report_input",
placeholder="Report name",
label_visibility="collapsed",
)
st.download_button(
"Download Report",
data = save_report_forecast(forecasted_table_df,forecasted_table_df2),
file_name = report_name+".xlsx",
mime="application/vnd.ms-excel",
# on_click=lambda: save_report_forecast(forecasted_table_df,report_name),
disabled=len(st.session_state["report_input"]) == 0,#use_container_width=True
)
# filename = st.text_input("Save Report: ",placeholder="Report name")
# if st.button("Download Report",disabled= (filename != "Report name")):
# excel_file_path = filename+ '.xlsx'
# forecasted_table_df.to_excel(excel_file_path, index=False)
# message_container = st.empty()
# with message_container:
# st.write(f'{"Report Saved!"}
', unsafe_allow_html=True)
# time.sleep(0.5)
# st.empty()
# on_click=lambda: save_scenario(scenario_name),
# disabled=len(st.session_state["scenario_input"]) == 0,#use_container_width=True
_columns = st.columns(2)
# with _columns[0]:
st.subheader("Save Scenario")
scenario_name = st.text_input(
"Scenario name",
key="scenario_input",
placeholder="Scenario name",
label_visibility="collapsed",
)
st.button(
"Save",
on_click=lambda: save_scenario(scenario_name),
disabled=len(st.session_state["scenario_input"]) == 0,#use_container_width=True
)
# def prepare_download_func():
# fig1,fig2,fig3 = scenario_planner_plots()
# ppt_file = save_ppt_file(summary_df_sorted,fig1,fig2,fig3)
if st.button("Prepare Analysis Download"):
fig1,fig2,fig3 = scenario_planner_plots2()
ppt_file = save_ppt_file(summary_df_sorted,fig1,fig2,fig3)
# Add a download button
try:
# ppt_file = prepare_download_func()
st.download_button(
label="Download Response Curves And Optimised Spends Overview",
data=ppt_file,
file_name="MMM_Scenario_Planner_Presentation.pptx",
mime="application/vnd.openxmlformats-officedocument.presentationml.presentation",
)
except:
st.write("")
# ppt_file = save_ppt_file()
# # Add a download button
# st.download_button(
# label="Download Analysis",
# data=ppt_file,
# file_name="MMM_Model_Quality_Presentation.pptx",
# mime="application/vnd.openxmlformats-officedocument.presentationml.presentation"
# )
elif auth_status == False:
st.error("Username/Password is incorrect")
if auth_status != True:
try:
username_forgot_pw, email_forgot_password, random_password = (
authenticator.forgot_password("Forgot password")
)
if username_forgot_pw:
st.session_state["config"]["credentials"]["usernames"][username_forgot_pw][
"password"
] = stauth.Hasher([random_password]).generate()[0]
send_email(email_forgot_password, random_password)
st.success("New password sent securely")
# Random password to be transferred to user securely
elif username_forgot_pw == False:
st.error("Username not found")
except Exception as e:
st.error(e)