import numpy as np from scipy.optimize import minimize, LinearConstraint, NonlinearConstraint from collections import OrderedDict import pandas as pd from numerize.numerize import numerize # from gekko import GEKKO def class_to_dict(class_instance): attr_dict = {} if isinstance(class_instance, Channel): attr_dict["type"] = "Channel" attr_dict["name"] = class_instance.name attr_dict["dates"] = class_instance.dates attr_dict["spends"] = class_instance.actual_spends attr_dict["conversion_rate"] = class_instance.conversion_rate attr_dict["modified_spends"] = class_instance.modified_spends attr_dict["modified_sales"] = class_instance.modified_sales attr_dict["response_curve_type"] = class_instance.response_curve_type attr_dict["response_curve_params"] = class_instance.response_curve_params attr_dict["penalty"] = class_instance.penalty attr_dict["bounds"] = class_instance.bounds attr_dict["actual_total_spends"] = class_instance.actual_total_spends attr_dict["actual_total_sales"] = class_instance.actual_total_sales attr_dict["modified_total_spends"] = class_instance.modified_total_spends attr_dict["modified_total_sales"] = class_instance.modified_total_sales # attr_dict["actual_mroi"] = class_instance.get_marginal_roi("actual") # attr_dict["modified_mroi"] = class_instance.get_marginal_roi("modified") elif isinstance(class_instance, Scenario): attr_dict["type"] = "Scenario" attr_dict["name"] = class_instance.name channels = [] for channel in class_instance.channels.values(): channels.append(class_to_dict(channel)) attr_dict["channels"] = channels attr_dict["constant"] = class_instance.constant attr_dict["correction"] = class_instance.correction attr_dict["actual_total_spends"] = class_instance.actual_total_spends attr_dict["actual_total_sales"] = class_instance.actual_total_sales attr_dict["modified_total_spends"] = class_instance.modified_total_spends attr_dict["modified_total_sales"] = class_instance.modified_total_sales return attr_dict def class_from_dict(attr_dict): if attr_dict["type"] == "Channel": return Channel.from_dict(attr_dict) elif attr_dict["type"] == "Scenario": return Scenario.from_dict(attr_dict) class Channel: def __init__( self, name, dates, spends, sales, response_curve_type, response_curve_params, bounds,channel_bounds_min,channel_bounds_max, conversion_rate=1, modified_spends=None, modified_sales=None, penalty=True, ): self.name = name self.dates = dates self.conversion_rate = conversion_rate self.actual_spends = spends.copy() self.actual_sales = sales.copy() if modified_spends is None: self.modified_spends = self.actual_spends.copy() else: self.modified_spends = modified_spends if modified_sales is None: # self.modified_sales = self.calculate_sales() self.modified_sales = self.actual_sales.copy() else: self.modified_sales = self.calculate_sales() # self.modified_spends = modified_spends self.response_curve_type = response_curve_type self.response_curve_params = response_curve_params self.bounds = bounds self.channel_bounds_min = channel_bounds_min self.channel_bounds_max = channel_bounds_max self.penalty = penalty self.upper_limit = self.actual_spends.max() + self.actual_spends.std() self.power = np.ceil(np.log(self.actual_spends.max()) / np.log(10)) - 3 # self.actual_sales = None # self.actual_sales = self.response_curve(self.actual_spends)#sales.copy()# self.actual_total_spends = self.actual_spends.sum() self.actual_total_sales = self.actual_sales.sum() self.modified_total_spends = self.modified_spends.sum() self.modified_total_sales = self.modified_sales.sum() self.delta_spends = self.modified_total_spends - self.actual_total_spends self.delta_sales = self.modified_total_sales - self.actual_total_sales # # # print(self.actual_total_spends) def update_penalty(self, penalty): self.penalty = penalty def _modify_spends(self, spends_array, total_spends): return spends_array * total_spends / spends_array.sum() def modify_spends(self, total_spends): # # # print(total_spends) self.modified_spends[0] = total_spends # ( # self.modified_spends * total_spends / self.modified_spends.sum() # ) # # # print("in spends") # # # print(self.modified_spends,self.modified_spends.sum()) def calculate_sales(self): # # # print("in calc_sales") # # # print(self.modified_spends) return self.response_curve(self.modified_spends) def hill_equation(x, Kd, n): return x**n / (Kd**n + x**n) def response_curve(self, x): # # # print(x) # if self.penalty: # # # print("in penalty") # x = np.where( # x < self.upper_limit, # x, # self.upper_limit + (x - self.upper_limit) * self.upper_limit / x, # ) if self.response_curve_type == "hill-eq": # dividing_parameter = check_dividing_parameter() # # # print("lalala") # # # # print(self.name)\ # # # print(len(x)) # # # print("in response curve function") # # # print(x) if len(x) == 1: dividing_rate = self.response_curve_params["num_pos_obsv"] # # # print(dividing_rate) # x = np.sum(x) else: dividing_rate = 1 # dividing_rate = self.response_curve_params["num_pos_obsv"] # x = np.sum(x) # dividing_rate = 104 Kd= self.response_curve_params["Kd"] n= self.response_curve_params["n"] x_min= self.response_curve_params["x_min"] x_max= self.response_curve_params["x_max"] y_min= self.response_curve_params["y_min"] y_max= self.response_curve_params['y_max'] # # # # print(x_min) # # # # print(Kd,n,x_min,x_max,y_min,y_max) # # # # print(np.sum(x)/104) x_inp = ( x/dividing_rate- x_min) / (x_max - x_min) # # # # print("x",x) # # # # print("x_inp",x_inp) x_out = x_inp**n / (Kd**n + x_inp**n) #self.hill_equation(x_inp,Kd, n) # # # # print("x_out",x_out) x_val_inv = (x_out*x_max + (1 - x_out) * x_min) sales = (x_val_inv*y_min/y_max)*dividing_rate # sales = ((x_max - x_min)*x_out + x_min)*dividing_rate sales[np.isnan(sales)] = 0 # # # # print(sales) # # # # print(np.sum(sales)) # # # # print("sales",sales) # # # print("aa") # # # print(sales) # # # print("aa1") if self.response_curve_type == "s-curve": if self.power >= 0: x = x / 10**self.power x = x.astype("float64") K = self.response_curve_params["Kd"] b = self.response_curve_params["b"] a = self.response_curve_params["a"] x0 = self.response_curve_params["x0"] sales = K / (1 + b * np.exp(-a * (x - x0))) if self.response_curve_type == "linear": beta = self.response_curve_params["beta"] sales = beta * x return sales def get_marginal_roi(self, flag): K = self.response_curve_params["K"] a = self.response_curve_params["a"] # x = self.modified_total_spends # if self.power >= 0 : # x = x / 10**self.power # x = x.astype('float64') # return K*b*a*np.exp(-a*(x-x0)) / (1 + b * np.exp(-a*(x - x0)))**2 if flag == "actual": y = self.response_curve(self.actual_spends) # spends_array = self.actual_spends # total_spends = self.actual_total_spends # total_sales = self.actual_total_sales else: y = self.response_curve(self.modified_spends) # spends_array = self.modified_spends # total_spends = self.modified_total_spends # total_sales = self.modified_total_sales # spends_inc_1 = self._modify_spends(spends_array, total_spends+1) mroi = a * (y) * (1 - y / K) return mroi.sum() / len(self.modified_spends) # spends_inc_1 = self.spends_array + 1 # new_total_sales = self.response_curve(spends_inc_1).sum() # return (new_total_sales - total_sales) / len(self.modified_spends) def update(self, total_spends): self.modify_spends(total_spends) self.modified_sales = self.calculate_sales() self.modified_total_spends = self.modified_spends.sum() self.modified_total_sales = self.modified_sales.sum() self.delta_spends = self.modified_total_spends - self.actual_total_spends self.delta_sales = self.modified_total_sales - self.actual_total_sales def update_bounds_min(self, modified_bound): self.channel_bounds_min = modified_bound def update_bounds_max(self, modified_bound): self.channel_bounds_max = modified_bound def intialize(self): self.new_spends = self.old_spends def __str__(self): return f"{self.name},{self.actual_total_sales}, {self.modified_total_spends}" @classmethod def from_dict(cls, attr_dict): return Channel( name=attr_dict["name"], dates=attr_dict["dates"], spends=attr_dict["spends"], bounds=attr_dict["bounds"], modified_spends=attr_dict["modified_spends"], response_curve_type=attr_dict["response_curve_type"], response_curve_params=attr_dict["response_curve_params"], penalty=attr_dict["penalty"], ) def update_response_curves(self, response_curve_params): self.response_curve_params = response_curve_params class Scenario: def __init__(self, name, channels, constant, correction): self.name = name self.channels = channels self.constant = constant self.correction = correction self.actual_total_spends = self.calculate_modified_total_spends() self.actual_total_sales = self.calculate_actual_total_sales() self.modified_total_sales = self.calculate_modified_total_sales() self.modified_total_spends = self.calculate_modified_total_spends() self.delta_spends = self.modified_total_spends - self.actual_total_spends self.delta_sales = self.modified_total_sales - self.actual_total_sales def update_penalty(self, value): for channel in self.channels.values(): channel.update_penalty(value) def calculate_modified_total_spends(self): total_actual_spends = 0.0 for channel in self.channels.values(): total_actual_spends += channel.actual_total_spends * 1.0 return total_actual_spends def calculate_modified_total_spends(self): total_modified_spends = 0.0 for channel in self.channels.values(): # import streamlit as st # st.write(channel.modified_total_spends ) total_modified_spends += ( channel.modified_total_spends * 1.0 ) return total_modified_spends def calculate_actual_total_sales(self): total_actual_sales = 0#self.constant.sum() + self.correction.sum() # # # print("a") for channel in self.channels.values(): total_actual_sales += channel.actual_total_sales # # # # print(channel.actual_total_sales) # # # # print(total_actual_sales) return total_actual_sales def calculate_modified_total_sales(self): total_modified_sales = 0 #self.constant.sum() + self.correction.sum() # # # print(total_modified_sales) for channel in self.channels.values(): # # # print(channel,channel.modified_total_sales) total_modified_sales += channel.modified_total_sales return total_modified_sales def update(self, channel_name, modified_spends): # # # print("in updtw") self.channels[channel_name].update(modified_spends) self.modified_total_sales = self.calculate_modified_total_sales() self.modified_total_spends = self.calculate_modified_total_spends() self.delta_spends = self.modified_total_spends - self.actual_total_spends self.delta_sales = self.modified_total_sales - self.actual_total_sales def update_bounds_min(self, channel_name,modified_bound): # self.modify_spends(total_spends) self.channels[channel_name].update_bounds_min(modified_bound) def update_bounds_max(self, channel_name,modified_bound): # self.modify_spends(total_spends) self.channels[channel_name].update_bounds_max(modified_bound) # def optimize_spends(self, sales_percent, channels_list, algo="COBYLA"): # desired_sales = self.actual_total_sales * (1 + sales_percent / 100.0) # def constraint(x): # for ch, spends in zip(channels_list, x): # self.update(ch, spends) # return self.modified_total_sales - desired_sales # bounds = [] # for ch in channels_list: # bounds.append( # (1 + np.array([-50.0, 100.0]) / 100.0) # * self.channels[ch].actual_total_spends # ) # initial_point = [] # for bound in bounds: # initial_point.append(bound[0]) # power = np.ceil(np.log(sum(initial_point)) / np.log(10)) # constraints = [NonlinearConstraint(constraint, -1.0, 1.0)] # res = minimize( # lambda x: sum(x) / 10 ** (power), # bounds=bounds, # x0=initial_point, # constraints=constraints, # method=algo, # options={"maxiter": int(2e7), "catol": 1}, # ) # for channel_name, modified_spends in zip(channels_list, res.x): # self.update(channel_name, modified_spends) # return zip(channels_list, res.x) def optimize_spends(self, sales_percent, channels_list, algo="trust-constr"): num_channels = len(channels_list) # # # # print("%"*100) desired_sales = self.actual_total_sales * (1 + sales_percent / 100.0) def constraint(x): for ch, spends in zip(channels_list, x): self.update(ch, spends) return self.modified_total_sales - desired_sales # def calc_overall_bounds(channels_list): # total_spends=0 # for ch in zip(channels_list): # print(ch) # total_spends= total_spends+self.channels[ch].actual_total_spends # return total_spends bounds = [] for ch in channels_list: # bounds.append( # (1+np.array([-50.0, 100.0]) / 100.0) # * self.channels[ch].actual_total_spends # ) lb = (1- int(self.channels[ch].channel_bounds_min) / 100) * self.channels[ch].actual_total_spends ub = (1+ int(self.channels[ch].channel_bounds_max) / 100) * self.channels[ch].actual_total_spends bounds.append((lb,ub)) # # # # print(self.channels[ch].actual_total_spends) initial_point = [] for bound in bounds: initial_point.append(bound[0]) # initial_point = np.nan_to_num(initial_point, nan=0.0, posinf=0.0, neginf=0.0) power = np.ceil(np.log(sum(initial_point)) / np.log(10)) constraints = [NonlinearConstraint(constraint, -1.0, 1.0), # LinearConstraint(np.ones((num_channels,)), lb = -50*calc_overall_bounds(channels_list), ub = 50*calc_overall_bounds(channels_list)) ] res = minimize( lambda x: sum(x) / 10 ** (power), bounds=bounds, x0=initial_point, constraints=constraints, method=algo, options={"maxiter": int(2e7), "xtol": 10}, ) for channel_name, modified_spends in zip(channels_list, res.x): self.update(channel_name, modified_spends) return zip(channels_list, res.x) def optimize(self, spends_percent, channels_list): # channels_list = self.channels.keys() num_channels = len(channels_list) spends_constant = [] spends_constraint = 0.0 for channel_name in channels_list: # spends_constraint += self.channels[channel_name].modified_total_spends spends_constant.append(self.channels[channel_name].conversion_rate) # # # print(spends_constant) spends_constraint += ( self.channels[channel_name].actual_total_spends+ self.channels[channel_name].delta_spends #* (1 + self.channels[channel_name].delta_spends / 100) ) # # # print("delta spends",self.channels[channel_name].delta_spends) # spends_constraint = spends_constraint * (1 + spends_percent / 100) constraint= LinearConstraint(np.ones((num_channels,)), lb = spends_constraint, ub = spends_constraint) # constraint = LinearConstraint( # np.array(spends_constant), # lb=spends_constraint, # ub=spends_constraint, # ) bounds = [] old_spends = [] for channel_name in channels_list: _channel_class = self.channels[channel_name] channel_bounds = _channel_class.bounds channel_actual_total_spends = _channel_class.actual_total_spends + _channel_class.delta_spends # * ( # (1 + _channel_class.delta_spends / 100) # ) old_spends.append(channel_actual_total_spends) # bounds.append((1+ channel_bounds / 100) * channel_actual_total_spends) lb = (1- int(_channel_class.channel_bounds_min) / 100) * _channel_class.actual_total_spends ub = (1+ int(_channel_class.channel_bounds_max) / 100) * _channel_class.actual_total_spends bounds.append((lb,ub)) # # # print("aaaaaa") # # print((_channel_class.channel_bounds_max,_channel_class.channel_bounds_min)) # _channel_class.channel_bounds_min # _channel_class.channel_bounds_max def cost_func1(channel,x): response_curve_params = pd.read_excel("response_curves_parameters.xlsx",index_col = "channel") param_dicts = {col: response_curve_params[col].to_dict() for col in response_curve_params.columns} Kd= param_dicts["Kd"][channel] n= param_dicts["n"][channel] x_min= param_dicts["x_min"][channel] x_max= param_dicts["x_max"][channel] y_min= param_dicts["y_min"][channel] y_max= param_dicts['y_max'][channel] division_parameter = param_dicts['num_pos_obsv'][channel] x_inp = ( x/division_parameter- x_min) / (x_max - x_min) # # # print(x_inp) x_out = x_inp**n / (Kd**n + x_inp**n) x_val_inv = (x_out*x_max + (1 - x_out) * x_min) sales = (x_val_inv*y_min/y_max)*division_parameter if np.isnan(sales): # # # print(sales,channel) sales = 0 # # # print(sales,channel) return sales def objective_function(x): sales = 0 it = 0 for channel_name, modified_spends in zip(channels_list, x): # sales = sales + cost_func1(channel_name,modified_spends) # print(channel_name, modified_spends,cost_func1(channel_name, modified_spends)) it+=1 self.update(channel_name, modified_spends) # # # print(self.modified_total_sales) # # # print(channel_name, modified_spends) return -1 * self.modified_total_sales # # # print(bounds) # # # # print("$"*100) res = minimize( lambda x: objective_function(x)/1e3, method="trust-constr", x0=old_spends, constraints=constraint, bounds=bounds, options={"maxiter": int(1e7), "xtol": 0.1}, ) for channel_name, modified_spends in zip(channels_list, res.x): # # # print("aaaaaaaaaaaaaa") self.update(channel_name, modified_spends) # # # print(channel_name, modified_spends,cost_func1(channel_name, modified_spends)) # print(it) return zip(channels_list, res.x) def hill_equation(self,x, Kd, n): return x**n / (Kd**n + x**n) # def spends_optimisation(self, spends_percent,channels_list): # m = GEKKO(remote=False) # # Define variables # # Initialize 13 variables with specific bounds # response_curve_params = pd.read_excel(r"C:\Users\PragyaJatav\Downloads\Untitled Folder 2\simulator uploaded - Copy\Simulator-UOPX\response_curves_parameters.xlsx",index_col = "channel") # param_dicts = {col: response_curve_params[col].to_dict() for col in response_curve_params.columns} # initial_values = list(param_dicts["x_min"].values()) # current_spends = list(param_dicts["current_spends"].values()) # lower_bounds = list(param_dicts["x_min"].values()) # num_channels = len(channels_list) # x_vars=[] # x_vars = [m.Var(value=param_dicts["current_spends"][_], lb=param_dicts["x_min"][_]*104, ub=5*param_dicts["current_spends"][_]) for _ in channels_list] # # # # print(x_vars) # # x_vars,lower_bounds # # Define the objective function to minimize # cost = 0 # spends = 0 # i = 0 # for i,c in enumerate(channels_list): # # # # # print(c) # # # # # print(x_vars[i]) # cost = cost + (self.cost_func(c, x_vars[i])) # spends = spends +x_vars[i] # m.Maximize(cost) # # Define constraints # m.Equation(spends == sum(current_spends)*(1 + spends_percent / 100)) # m.Equation(spends <= sum(current_spends)*0.5) # m.Equation(spends >= sum(current_spends)*1.5) # m.solve(disp=True) # for i, var in enumerate(x_vars): # # # # print(f"x{i+1} = {var.value[0]}") # for channel_name, modified_spends in zip(channels_list, x_vars): # self.update(channel_name, modified_spends.value[0]) # return zip(channels_list, x_vars) def save(self): details = {} actual_list = [] modified_list = [] data = {} channel_data = [] summary_rows = [] actual_list.append( { "name": "Total", "Spends": self.actual_total_spends, "Sales": self.actual_total_sales, } ) modified_list.append( { "name": "Total", "Spends": self.modified_total_spends, "Sales": self.modified_total_sales, } ) for channel in self.channels.values(): name_mod = channel.name.replace("_", " ") if name_mod.lower().endswith(" imp"): name_mod = name_mod.replace("Imp", " Impressions") summary_rows.append( [ name_mod, channel.actual_total_spends, channel.modified_total_spends, channel.actual_total_sales, channel.modified_total_sales, round(channel.actual_total_sales / channel.actual_total_spends, 2), round( channel.modified_total_sales / channel.modified_total_spends, 2, ), channel.get_marginal_roi("actual"), channel.get_marginal_roi("modified"), ] ) data[channel.name] = channel.modified_spends data["Date"] = channel.dates data["Sales"] = ( data.get("Sales", np.zeros((len(channel.dates),))) + channel.modified_sales ) actual_list.append( { "name": channel.name, "Spends": channel.actual_total_spends, "Sales": channel.actual_total_sales, "ROI": round( channel.actual_total_sales / channel.actual_total_spends, 2 ), } ) modified_list.append( { "name": channel.name, "Spends": channel.modified_total_spends, "Sales": channel.modified_total_sales, "ROI": round( channel.modified_total_sales / channel.modified_total_spends, 2, ), "Marginal ROI": channel.get_marginal_roi("modified"), } ) channel_data.append( { "channel": channel.name, "spends_act": channel.actual_total_spends, "spends_mod": channel.modified_total_spends, "sales_act": channel.actual_total_sales, "sales_mod": channel.modified_total_sales, } ) summary_rows.append( [ "Total", self.actual_total_spends, self.modified_total_spends, self.actual_total_sales, self.modified_total_sales, round(self.actual_total_sales / self.actual_total_spends, 2), round(self.modified_total_sales / self.modified_total_spends, 2), 0.0, 0.0, ] ) details["Actual"] = actual_list details["Modified"] = modified_list columns_index = pd.MultiIndex.from_product( [[""], ["Channel"]], names=["first", "second"] ) columns_index = columns_index.append( pd.MultiIndex.from_product( [["Spends", "NRPU", "ROI", "MROI"], ["Actual", "Simulated"]], names=["first", "second"], ) ) details["Summary"] = pd.DataFrame(summary_rows, columns=columns_index) data_df = pd.DataFrame(data) channel_list = list(self.channels.keys()) data_df = data_df[["Date", *channel_list, "Sales"]] details["download"] = { "data_df": data_df, "channels_df": pd.DataFrame(channel_data), "total_spends_act": self.actual_total_spends, "total_sales_act": self.actual_total_sales, "total_spends_mod": self.modified_total_spends, "total_sales_mod": self.modified_total_sales, } return details @classmethod def from_dict(cls, attr_dict): channels_list = attr_dict["channels"] channels = { channel["name"]: class_from_dict(channel) for channel in channels_list } return Scenario( name=attr_dict["name"], channels=channels, constant=attr_dict["constant"], correction=attr_dict["correction"], )