import streamlit as st import pandas as pd from sklearn.preprocessing import MinMaxScaler import pickle import Streamlit_functions as sf from utilities import (load_authenticator) from utilities_with_panel import (set_header, overview_test_data_prep_panel, overview_test_data_prep_nonpanel, initialize_data, load_local_css, create_channel_summary, create_contribution_pie, create_contribuion_stacked_plot, create_channel_spends_sales_plot, format_numbers, channel_name_formating) import plotly.graph_objects as go import streamlit_authenticator as stauth import yaml from yaml import SafeLoader import time from datetime import datetime,timedelta st.set_page_config(layout='wide') load_local_css('styles.css') set_header() st.title("Model Result Overview") def get_random_effects(media_data, panel_col, mdf): random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"]) for i, market in enumerate(media_data[panel_col].unique()): # print(i, end='\r') intercept = mdf.random_effects[market].values[0] random_eff_df.loc[i, 'random_effect'] = intercept random_eff_df.loc[i, panel_col] = market return random_eff_df def process_train_and_test(train, test, features, panel_col, target_col): X1 = train[features] ss = MinMaxScaler() X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns) X1[panel_col] = train[panel_col] X1[target_col] = train[target_col] if test is not None: X2 = test[features] X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns) X2[panel_col] = test[panel_col] X2[target_col] = test[target_col] return X1, X2 return X1 def mdf_predict(X_df, mdf, random_eff_df) : X=X_df.copy() X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left') X['pred_fixed_effect'] = mdf.predict(X) X['pred'] = X['pred_fixed_effect'] + X['random_effect'] X.to_csv('Test/merged_df_contri.csv',index=False) X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True) return X target_col='Prospects' target='Prospects' # is_panel=False # is_panel = st.session_state['is_panel'] #panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column panel_col='Panel' date_col = 'date' #st.write(media_data) is_panel = True # panel_col='markets' date_col = 'date' for k, v in st.session_state.items(): if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): st.session_state[k] = v authenticator = st.session_state.get('authenticator') if authenticator is None: authenticator = load_authenticator() name, authentication_status, username = authenticator.login('Login', 'main') auth_status = st.session_state['authentication_status'] if auth_status: authenticator.logout('Logout', 'main') is_state_initiaized = st.session_state.get('initialized',False) if not is_state_initiaized: a=1 with st.expander("View Channel Wise Spend And Prospect Analysis "): # Create two columns for start date and end date input col1, col2 = st.columns(2) min_date,max_date = sf.get_date_range() # st.write(min_date,max_date) # min_date = datetime(2023, 1, 1) # max_date = datetime(2024, 12, 31) default_date1,default_date2 = sf.get_default_dates() # st.write(default_date1,default_date2) with col1: start_date = st.date_input("Start Date: ",value=default_date1,min_value=min_date, max_value=max_date) with col2: end_date = st.date_input("End Date: ",value = default_date2,min_value=min_date, max_value=max_date) # col1, col2 = st.columns(2) # with col1: # fig = sf.pie_spend(start_date,end_date) # st.plotly_chart(fig,use_container_width=True) # with col2: # fig = sf.pie_contributions(start_date,end_date) # st.plotly_chart(fig,use_container_width=True) # st.header("Distribution of Spends and Contributions") fig = sf.pie_charts(start_date,end_date) st.plotly_chart(fig,use_container_width=True) ## Channel Contribution Bar Chart st.plotly_chart(sf.channel_contribution(start_date,end_date),use_container_width=True) st.plotly_chart(sf.chanel_spends(start_date,end_date),use_container_width=True) # Format first three rows in percentage format # styled_df = sf.shares_table_func(shares_df) # # styled_df = styled_df.round(0).astype(int) # styled_df.iloc[:3] = (styled_df.iloc[:3]).astype(int) # # Round next two rows to two decimal places # styled_df.iloc[3:5] = styled_df.iloc[3:5].round(0).astype(str) # st.table(styled_df) shares_df = sf.shares_df_func(start_date,end_date) st.dataframe(sf.shares_table_func(shares_df),use_container_width=True) st.dataframe(sf.eff_table_func(shares_df).style.format({"TOTAL SPEND": "{:,.0f}", "TOTAL SUPPORT": "{:,.0f}", "TOTAL CONTRIBUTION": "{:,.0f}"}),use_container_width=True) ### CPP CHART st.plotly_chart(sf.cpp(start_date,end_date),use_container_width=True) data_selection_type = st.radio("Select Input Type",["Compare Monthly Change", "Compare Custom Range"]) waterfall_start_date,waterfall_end_date = start_date,end_date with st.expander("View Change in MMM Estimated Prospect Contributions Analysis"): # Dropdown menu options st.markdown("

Change in MMM Estimated Prospect Contributions

", unsafe_allow_html=True) if data_selection_type == "Compare Monthly Change": options = [ "Month on Month", "Year on Year"] col1, col2 = st.columns(2) # Create a dropdown menu with col1: selected_option = st.selectbox('Select a comparison', options) with col2: st.markdown("""
""",unsafe_allow_html=True) if selected_option == "Month on Month" : st.markdown( f"""
Comparision of current month spends to previous month spends
""", unsafe_allow_html=True ) else : st.markdown( f"""
Comparision of current month spends to the same month in previous year
""", unsafe_allow_html=True ) # Waterfall chart def get_month_year_list(start_date, end_date): # Generate a range of dates from start_date to end_date with a monthly frequency dates = pd.date_range(start=start_date, end=end_date, freq='MS') # 'MS' is month start frequency # Extract month and year from each date and create a list of tuples month_year_list = [(date.month, date.year) for date in dates] return month_year_list def get_start_end_dates(month, year): start_date = datetime(year, month, 1).date() if month == 12: end_date = datetime(year + 1, 1, 1).date() - timedelta(days=1) else: end_date = datetime(year, month + 1, 1).date() - timedelta(days=1) return start_date, end_date month_year_list = get_month_year_list(start_date, end_date) dropdown_options = [f"{date.strftime('%B %Y')}" for date in pd.date_range(start=start_date, end=end_date, freq='MS')] waterfall_option = st.selectbox("Select a month:", dropdown_options) waterfall_date = datetime.strptime(waterfall_option, "%B %Y") waterfall_month = waterfall_date.month waterfall_year = waterfall_date.year waterfall_start_date, waterfall_end_date = get_start_end_dates(waterfall_month, waterfall_year) # st.write("abc") # figw = sf.waterfall(waterfall_start_date,waterfall_end_date) figw= sf.waterfall(waterfall_start_date,waterfall_end_date,selected_option) st.plotly_chart(figw,use_container_width=True) elif data_selection_type == "Compare Custom Range": col1, col2 = st.columns(2) min_date,max_date = sf.get_date_range() with col1: st.write("Select Time Period 1") sc1,sc2 = st.columns(2) with sc1: waterfall_start_date1 = st.date_input("Start Date 1: ",value=start_date,min_value=min_date, max_value=max_date) with sc2: waterfall_end_date1 = st.date_input("End Date 1: ",value = end_date,min_value=min_date, max_value=max_date) with col2: st.write("Select Time Period 2") ec1,ec2 = st.columns(2) with ec1: waterfall_start_date2 = st.date_input("Start Date 2: ",value=end_date-timedelta(days = -1),min_value=min_date, max_value=max_date) with ec2: diff = min((start_date-end_date).days,-30) waterfall_end_date2 = st.date_input("End Date 2: ",value = start_date,min_value=min_date, max_value=max_date) try: figw= sf.waterfall2(waterfall_start_date1,waterfall_end_date1,waterfall_start_date2,waterfall_end_date2) st.plotly_chart(figw,use_container_width=True) except: st.warning("Previous data does not exist") # Waterfall table # shares_df = sf.shares_df_func(waterfall_start_date,waterfall_end_date) st.table(sf.waterfall_table_func(shares_df).style.format("{:.0%}")) with st.expander("View Decomposition Analysis"): ### Base decomp CHART st.plotly_chart(sf.base_decomp(),use_container_width=True) ### Media decomp CHART st.plotly_chart(sf.media_decomp(),use_container_width=True)