from numerize.numerize import numerize import streamlit as st import pandas as pd import json from classes import Channel, Scenario import numpy as np from plotly.subplots import make_subplots import plotly.graph_objects as go from classes import class_to_dict from collections import OrderedDict import io import plotly from pathlib import Path import pickle import streamlit_authenticator as stauth import yaml from yaml import SafeLoader from streamlit.components.v1 import html import smtplib from scipy.optimize import curve_fit from sklearn.metrics import r2_score from classes import class_from_dict import os import base64 color_palette = ['#001f78', '#00b5db', '#f03d14', '#fa6e0a', '#ffbf45'] CURRENCY_INDICATOR = '€' def load_authenticator(): with open('config.yaml') as file: config = yaml.load(file, Loader=SafeLoader) st.session_state['config'] = config authenticator = stauth.Authenticate( config['credentials'], config['cookie']['name'], config['cookie']['key'], config['cookie']['expiry_days'], config['preauthorized'] ) st.session_state['authenticator'] = authenticator return authenticator def nav_page(page_name, timeout_secs=3): nav_script = """ """ % (page_name, timeout_secs) html(nav_script) # def load_local_css(file_name): # with open(file_name) as f: # st.markdown(f'', unsafe_allow_html=True) # def set_header(): # return st.markdown(f"""
#

MMM LiME

# #
""", unsafe_allow_html=True) # path = os.path.dirname(__file__) # file_ = open(f"{path}/mastercard_logo.png", "rb") # contents = file_.read() # data_url = base64.b64encode(contents).decode("utf-8") # file_.close() DATA_PATH = './data' IMAGES_PATH = './data/images_224_224' # New - Sprint 2 if 'bin_dict' not in st.session_state: with open("data_import.pkl", "rb") as f: data = pickle.load(f) st.session_state['bin_dict'] = data["bin_dict"] # panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column panel_col="Panel" is_panel = True if len(panel_col)>0 else False date_col='Date' #is_panel = False # flag if set to true - do panel level response curves def load_local_css(file_name): with open(file_name) as f: st.markdown(f'', unsafe_allow_html=True) # def set_header(): # return st.markdown(f"""
#

H & M Recommendations

# Logo #
""", unsafe_allow_html=True) path1 = os.path.dirname(__file__) file_1 = open(f"ALDI_2017.png", "rb") contents1 = file_1.read() data_url1 = base64.b64encode(contents1).decode("utf-8") file_1.close() DATA_PATH1 = './data' IMAGES_PATH1 = './data/images_224_224' def set_header(): return st.markdown(f"""
""", unsafe_allow_html=True) # def set_header(): # logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path # text = "LiME" # return st.markdown(f"""
# Logo #

{text}

#
""", unsafe_allow_html=True) def s_curve(x,K,b,a,x0): return K / (1 + b * np.exp(-a*(x-x0))) def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col): ''' function to create the data which is used in initialize data fn X : X test with contributions df : originally uploaded data (media data) which has raw vars spends_X : spends of dates in X test ''' # define channels channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'], 'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions'], #, 'fb:_level_achieved_-_tier_1_clicks'], 'fb_level_achieved_tier_2': ['fb:_level_achieved_tier_2_impressions', 'fb_level_achieved_tier_2_clicks'], 'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'], 'ga_app': ['ga_app_impressions', 'ga_app_clicks'], 'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'], 'kwai': ['kwai_impressions', 'kwai_clicks'], 'programmatic': ['programmatic_impressions', 'programmatic_clicks'], # 'affiliates':['affiliates_clicks'], # # "indicacao":['indicacao_clicks'], # # "infleux":['infleux_clicks'], # # "influencer":['influencer_clicks'] } channel_list = list(channels.keys()) # map transformed variable to raw variable name & channel name # mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel) variables = {} channel_and_variables = {} new_variables = {} new_channels_and_variables = {} for transformed_var in [col for col in X.drop(columns=[date_col, panel_col, target_col, 'pred', 'panel_effect']).columns if "_contr" not in col]: if len([col for col in df.columns if col in transformed_var]) == 1: raw_var = [col for col in df.columns if col in transformed_var][0] variables[transformed_var] = raw_var channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][ 0] else: new_variables[transformed_var] = transformed_var new_channels_and_variables[transformed_var] = 'base' # Raw DF raw_X = pd.merge(X[[date_col, panel_col]], df[[date_col, panel_col] + list(variables.values())], how='left', on=[date_col, panel_col]) assert len(raw_X) == len(X) raw_X_cols = [] for i in raw_X.columns: if i in channel_and_variables.keys(): raw_X_cols.append(channel_and_variables[i]) else: raw_X_cols.append(i) raw_X.columns = raw_X_cols # Contribution DF contr_X = X[[date_col, panel_col, 'panel_effect'] + [col for col in X.columns if "_contr" in col and "sum_" not in col]].copy() new_variables = [col for col in contr_X.columns if "_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()] if len(new_variables) > 0: contr_X['const'] = contr_X[['panel_effect'] + new_variables].sum(axis=1) contr_X.drop(columns=['panel_effect'], inplace=True) contr_X.drop(columns=new_variables, inplace=True) else: contr_X.rename(columns={'panel_effect': 'const'}, inplace=True) new_contr_X_cols = [] for col in contr_X.columns: col_clean = col.replace("_contr", "") new_contr_X_cols.append(col_clean) contr_X.columns = new_contr_X_cols contr_X_cols = [] for i in contr_X.columns: if i in variables.keys(): contr_X_cols.append(channel_and_variables[variables[i]]) else: contr_X_cols.append(i) contr_X.columns = contr_X_cols # Spends DF spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns] raw_X.rename(columns={"date": "Date"}, inplace=True) contr_X.rename(columns={"date": "Date"}, inplace=True) spends_X.rename(columns={'date': 'Week'}, inplace=True) # Create excel file_name = "data_test_overview_panel_#" + target_col + ".xlsx" with pd.ExcelWriter(file_name) as writer: raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False) contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False) spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False) def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col): ''' function to create the data which is used in initialize data fn X : X test with contributions df : originally uploaded data (media data) which has raw vars spends_X : spends of dates in X test ''' # define channels channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'], 'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions', 'fb_level_achieved_tier_1_clicks'], 'fb_level_achieved_tier_2': ['fb_level_achieved_tier_2_impressions', 'fb_level_achieved_tier_2_clicks'], 'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'], 'ga_app_will_and_cid_pequena_baixo_risco': ['ga_app_will_and_cid_pequena_baixo_risco_impressions', 'ga_app_will_and_cid_pequena_baixo_risco_clicks'], 'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'], 'kwai': ['kwai_impressions', 'kwai_clicks'], 'programmatic': ['programmatic_impressions', 'programmatic_clicks'], 'affiliates':['affiliates_clicks', 'affiliates_impressions'], "indicacao":['indicacao_clicks', 'indicacao_impressions'], "infleux":['infleux_clicks', 'infleux_impressions'], "influencer":['influencer_clicks', 'influencer_impressions'] } channel_list = list(channels.keys()) # map transformed variable to raw variable name & channel name # mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel) variables = {} channel_and_variables = {} new_variables = {} new_channels_and_variables = {} cols_to_del = list(set([date_col, target_col, 'pred']).intersection((set(X.columns)))) for transformed_var in [col for col in X.drop(columns=cols_to_del).columns if "_contr" not in col]: # also has 'const' if len([col for col in df.columns if col in transformed_var]) == 1: # col is raw var raw_var = [col for col in df.columns if col in transformed_var][0] variables[transformed_var] = raw_var channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][0] else: # when no corresponding raw var then base new_variables[transformed_var] = transformed_var new_channels_and_variables[transformed_var] = 'base' # Raw DF raw_X = pd.merge(X[[date_col]], df[[date_col] + list(variables.values())], how='left', on=[date_col]) assert len(raw_X) == len(X) raw_X_cols = [] for i in raw_X.columns: if i in channel_and_variables.keys(): raw_X_cols.append(channel_and_variables[i]) else: raw_X_cols.append(i) raw_X.columns = raw_X_cols # Contribution DF contr_X = X[[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col]].copy() # st.write(contr_X.columns) new_variables = [col for col in contr_X.columns if "_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()] if len(new_variables) > 0: # if new vars are available, their contributions should be added to base (called const) contr_X['const_contr'] = contr_X[['const_contr'] + new_variables].sum(axis=1) contr_X.drop(columns=new_variables, inplace=True) new_contr_X_cols = [] for col in contr_X.columns: col_clean = col.replace("_contr", "") new_contr_X_cols.append(col_clean) contr_X.columns = new_contr_X_cols contr_X_cols = [] for i in contr_X.columns: if i in variables.keys(): contr_X_cols.append(channel_and_variables[variables[i]]) else: contr_X_cols.append(i) contr_X.columns = contr_X_cols # Spends DF spends_X.columns = [col.replace("_cost", "").replace("_spends", '').replace("_spend", "") for col in spends_X.columns] raw_X.rename(columns={"date": "Date"}, inplace=True) contr_X.rename(columns={"date": "Date"}, inplace=True) spends_X.rename(columns={'date': 'Week'}, inplace=True) # Create excel file_name = "data_test_overview_panel_#" + target_col + ".xlsx" with pd.ExcelWriter(file_name) as writer: raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False) contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False) spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False) def initialize_data(target_col,selected_markets): # uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173, # "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1, # "digital_spends":1} #print('State initialized') # excel = pd.read_excel("data_test_overview_panel.xlsx",sheet_name=None) #excel = pd.read_excel("Overview_data_test_panel@#revenue.xlsx" + target_col + ".xlsx",sheet_name=None) excel = pd.read_excel("Overview_data_test_panel@#prospects.xlsx",sheet_name=None) raw_df = excel['RAW DATA MMM'] spend_df = excel['SPEND INPUT'] contri_df = excel['CONTRIBUTION MMM'] #st.write(raw_df) if selected_markets!= "Total Market": raw_df=raw_df[raw_df['Panel']==selected_markets] spend_df=spend_df[spend_df['Panel']==selected_markets] contri_df=contri_df[contri_df['Panel']==selected_markets] else: raw_df=raw_df.groupby('Date').sum().reset_index() spend_df=spend_df.groupby('Week').sum().reset_index() contri_df=contri_df.groupby('Date').sum().reset_index() #Revenue_df = excel['Revenue'] ## remove sesonalities, indices etc ... exclude_columns = ['Date', 'Week','Panel',date_col, panel_col,'Others' ] # Aggregate all 3 dfs to date level (from date-panel level) raw_df[date_col]=pd.to_datetime(raw_df[date_col]) raw_df_aggregations = {c:'sum' for c in raw_df.columns if c not in exclude_columns} raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index() contri_df[date_col]=pd.to_datetime(contri_df[date_col]) contri_df_aggregations = {c:'sum' for c in contri_df.columns if c not in exclude_columns} contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index() input_df = raw_df.sort_values(by=[date_col]) output_df = contri_df.sort_values(by=[date_col]) spend_df['Week'] = pd.to_datetime(spend_df['Week'], format='%Y-%m-%d', errors='coerce') spend_df_aggregations = {c: 'sum' for c in spend_df.columns if c not in exclude_columns} spend_df = spend_df.groupby('Week').agg(spend_df_aggregations).reset_index() # spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce') # spend_df = spend_df.sort_values(by='Week') channel_list = [col for col in input_df.columns if col not in exclude_columns] response_curves = {} mapes = {} rmses = {} upper_limits = {} powers = {} r2 = {} conv_rates = {} output_cols = [] channels = {} sales = None dates = input_df.Date.values actual_output_dic = {} actual_input_dic = {} # ONLY FOR TESTING # channel_list=['programmatic'] infeasible_channels = [c for c in contri_df.select_dtypes(include=['float', 'int']).columns if contri_df[c].sum()<=0] # st.write(infeasible_channels) channel_list=list(set(channel_list)-set(infeasible_channels)) for inp_col in channel_list: #st.write(inp_col) # # New - Sprint 2 # if is_panel: # input_df1 = input_df.groupby([date_col]).agg({inp_col:'sum'}).reset_index() # aggregate spends on date # spends = input_df1[inp_col].values # else : # spends = input_df[inp_col].values spends = spend_df[inp_col].values x = spends.copy() # upper limit for penalty upper_limits[inp_col] = 2*x.max() # contribution # New - Sprint 2 out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0] if is_panel : output_df1 = output_df.groupby([date_col]).agg({out_col:'sum'}).reset_index() y = output_df1[out_col].values.copy() else : y = output_df[out_col].values.copy() actual_output_dic[inp_col] = y.copy() actual_input_dic[inp_col] = x.copy() ##output cols aggregation output_cols.append(out_col) ## scale the input power = (np.ceil(np.log(x.max()) / np.log(10) )- 3) if power >= 0 : x = x / 10**power x = x.astype('float64') y = y.astype('float64') #print('#printing yyyyyyyyy') #print(inp_col) #print(x.max()) #print(y.max()) # st.write(y.max(),x.max()) print(y.max(),x.max()) if y.max()<=0.01: if x.max()<=0.01 : st.write("here-here") bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01)) else : st.write("here") bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01)) else : bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max())) #bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max())) params,_ = curve_fit(s_curve,x,y,p0=(2*y.max(),0.01,1e-5,x.max()), bounds=bounds, maxfev=int(1e5)) mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean() rmse = np.sqrt(((y - s_curve(x,*params))**2).mean()) r2_ = r2_score(y, s_curve(x,*params)) response_curves[inp_col] = {'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]} mapes[inp_col] = mape rmses[inp_col] = rmse r2[inp_col] = r2_ powers[inp_col] = power ## conversion rates spend_col = [_col for _col in spend_df.columns if _col.startswith(inp_col.rsplit('_',1)[0])][0] #print('#printing spendssss') #print(spend_col) conv = (spend_df.set_index('Week')[spend_col] / input_df.set_index('Date')[inp_col].clip(lower=1)).reset_index() conv.rename(columns={'index':'Week'},inplace=True) conv['year'] = conv.Week.dt.year conv_rates[inp_col] = list(conv.drop('Week',axis=1).mean().to_dict().values())[0] ##print('Before',conv_rates[inp_col]) # conv_rates[inp_col] = uopx_conv_rates[inp_col] ##print('After',(conv_rates[inp_col])) channel = Channel(name=inp_col,dates=dates, spends=spends, # conversion_rate = np.mean(list(conv_rates[inp_col].values())), conversion_rate = conv_rates[inp_col], response_curve_type='s-curve', response_curve_params={'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]}, bounds=np.array([-10,10])) channels[inp_col] = channel if sales is None: sales = channel.actual_sales else: sales += channel.actual_sales # st.write(inp_col, channel.actual_sales) # st.write(output_cols) other_contributions = output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only = True).values correction = output_df.drop(['Date'],axis=1).sum(axis=1).values - (sales + other_contributions) scenario_test_df=pd.DataFrame(columns=['other_contributions','correction', 'sales']) scenario_test_df['other_contributions']=other_contributions scenario_test_df['correction']=correction scenario_test_df['sales']=sales scenario_test_df.to_csv("test/scenario_test_df.csv",index=False) output_df.to_csv("test/output_df.csv",index=False) scenario = Scenario(name='default', channels=channels, constant=other_contributions, correction = correction) ## setting session variables st.session_state['initialized'] = True st.session_state['actual_df'] = input_df st.session_state['raw_df'] = raw_df st.session_state['contri_df'] = output_df default_scenario_dict = class_to_dict(scenario) st.session_state['default_scenario_dict'] = default_scenario_dict st.session_state['scenario'] = scenario st.session_state['channels_list'] = channel_list st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} st.session_state['rcs'] = response_curves st.session_state['powers'] = powers st.session_state['actual_contribution_df'] = pd.DataFrame(actual_output_dic) st.session_state['actual_input_df'] = pd.DataFrame(actual_input_dic) for channel in channels.values(): st.session_state[channel.name] = numerize(channel.actual_total_spends * channel.conversion_rate,1) st.session_state['xlsx_buffer'] = io.BytesIO() if Path('../saved_scenarios.pkl').exists(): with open('../saved_scenarios.pkl','rb') as f: st.session_state['saved_scenarios'] = pickle.load(f) else: st.session_state['saved_scenarios'] = OrderedDict() st.session_state['total_spends_change'] = 0 st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} st.session_state['disable_download_button'] = True # def initialize_data(): # # fetch data from excel # output = pd.read_excel('data.xlsx',sheet_name=None) # raw_df = output['RAW DATA MMM'] # contribution_df = output['CONTRIBUTION MMM'] # Revenue_df = output['Revenue'] # ## channels to be shows # channel_list = [] # for col in raw_df.columns: # if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower(): # ##print(col) # channel_list.append(col) # else: # pass # ## NOTE : Considered only Desktop spends for all calculations # acutal_df = raw_df[raw_df.Region == 'Desktop'].copy() # ## NOTE : Considered one year of data # acutal_df = acutal_df[acutal_df.Date>'2020-12-31'] # actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']] # ##load response curves # with open('./grammarly_response_curves.json','r') as f: # response_curves = json.load(f) # ## create channel dict for scenario creation # dates = actual_df.Date.values # channels = {} # rcs = {} # constant = 0. # for i,info_dict in enumerate(response_curves): # name = info_dict.get('name') # response_curve_type = info_dict.get('response_curve') # response_curve_params = info_dict.get('params') # rcs[name] = response_curve_params # if name != 'constant': # spends = actual_df[name].values # channel = Channel(name=name,dates=dates, # spends=spends, # response_curve_type=response_curve_type, # response_curve_params=response_curve_params, # bounds=np.array([-30,30])) # channels[name] = channel # else: # constant = info_dict.get('value',0.) * len(dates) # ## create scenario # scenario = Scenario(name='default', channels=channels, constant=constant) # default_scenario_dict = class_to_dict(scenario) # ## setting session variables # st.session_state['initialized'] = True # st.session_state['actual_df'] = actual_df # st.session_state['raw_df'] = raw_df # st.session_state['default_scenario_dict'] = default_scenario_dict # st.session_state['scenario'] = scenario # st.session_state['channels_list'] = channel_list # st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} # st.session_state['rcs'] = rcs # for channel in channels.values(): # if channel.name not in st.session_state: # st.session_state[channel.name] = float(channel.actual_total_spends) # if 'xlsx_buffer' not in st.session_state: # st.session_state['xlsx_buffer'] = io.BytesIO() # ## for saving scenarios # if 'saved_scenarios' not in st.session_state: # if Path('../saved_scenarios.pkl').exists(): # with open('../saved_scenarios.pkl','rb') as f: # st.session_state['saved_scenarios'] = pickle.load(f) # else: # st.session_state['saved_scenarios'] = OrderedDict() # if 'total_spends_change' not in st.session_state: # st.session_state['total_spends_change'] = 0 # if 'optimization_channels' not in st.session_state: # st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list} # if 'disable_download_button' not in st.session_state: # st.session_state['disable_download_button'] = True def create_channel_summary(scenario): summary_columns = [] actual_spends_rows = [] actual_sales_rows = [] actual_roi_rows = [] for channel in scenario.channels.values(): name_mod = channel.name.replace('_', ' ') if name_mod.lower().endswith(' imp'): name_mod = name_mod.replace('Imp', ' Impressions') print(name_mod, channel.actual_total_spends, channel.conversion_rate, channel.actual_total_spends * channel.conversion_rate) summary_columns.append(name_mod) actual_spends_rows.append(format_numbers(float(channel.actual_total_spends * channel.conversion_rate))) actual_sales_rows.append(format_numbers((float(channel.actual_total_sales)))) actual_roi_rows.append(decimal_formater( format_numbers((channel.actual_total_sales) / (channel.actual_total_spends * channel.conversion_rate), include_indicator=False, n_decimals=4), n_decimals=4)) actual_summary_df = pd.DataFrame([summary_columns, actual_spends_rows, actual_sales_rows, actual_roi_rows]).T actual_summary_df.columns = ['Channel', 'Spends', 'Prospects', 'ROI'] actual_summary_df['Prospects'] = actual_summary_df['Prospects'].map(lambda x: str(x)[1:]) return actual_summary_df # def create_channel_summary(scenario): # # # Provided data # data = { # 'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'], # 'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'], # 'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M'] # } # # # Create DataFrame # df = pd.DataFrame(data) # # # Convert currency strings to numeric values # df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int) # df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int) # # # Calculate ROI # df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends']) # # # Format columns # format_currency = lambda x: f"${x:,.1f}" # format_roi = lambda x: f"{x:.1f}" # # df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'] # df['Revenue'] = ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M'] # df['ROI'] = df['ROI'].apply(format_roi) # # return df #@st.cache_data() def create_contribution_pie(scenario): #c1f7dc light_blue = 'rgba(0, 31, 120, 0.7)' light_orange = 'rgba(0, 181, 219, 0.7)' light_green = 'rgba(240, 61, 20, 0.7)' light_red = 'rgba(250, 110, 10, 0.7)' light_purple = 'rgba(255, 191, 69, 0.7)' colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))} total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Media Spends','Prospects Contribution'],specs=[[{"type": "pie"}, {"type": "pie"}]]) total_contribution_fig.add_trace( go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'], values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0], marker_colors=[light_blue, light_orange, light_green, light_red, light_purple], hole=0.3), row=1, col=1) total_contribution_fig.add_trace( go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'], values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()], hole=0.3), row=1, col=2) total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}') total_contribution_fig.update_layout(uniformtext_minsize=12,title='', uniformtext_mode='hide') return total_contribution_fig #@st.cache_data() # def create_contribuion_stacked_plot(scenario): # weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]]) # raw_df = st.session_state['raw_df'] # df = raw_df.sort_values(by='Date') # x = df.Date # weekly_spends_data = [] # weekly_sales_data = [] # for channel_name in st.session_state['channels_list']: # weekly_spends_data.append((go.Bar(x=x, # y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate, # name=channel_name_formating(channel_name), # hovertemplate="Date:%{x}
Spend:%{y:$.2s}", # legendgroup=channel_name))) # weekly_sales_data.append((go.Bar(x=x, # y=scenario.channels[channel_name].actual_sales, # name=channel_name_formating(channel_name), # hovertemplate="Date:%{x}
Revenue:%{y:$.2s}", # legendgroup=channel_name, showlegend=False))) # for _d in weekly_spends_data: # weekly_contribution_fig.add_trace(_d, row=1, col=1) # for _d in weekly_sales_data: # weekly_contribution_fig.add_trace(_d, row=1, col=2) # weekly_contribution_fig.add_trace(go.Bar(x=x, # y=scenario.constant + scenario.correction, # name='Non Media', # hovertemplate="Date:%{x}
Revenue:%{y:$.2s}"), row=1, col=2) # weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date') # weekly_contribution_fig.update_xaxes(showgrid=False) # weekly_contribution_fig.update_yaxes(showgrid=False) # return weekly_contribution_fig # @st.cache_data(allow_output_mutation=True) # def create_channel_spends_sales_plot(channel): # if channel is not None: # x = channel.dates # _spends = channel.actual_spends * channel.conversion_rate # _sales = channel.actual_sales # channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) # channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}
Revenue:%{y:$.2s}"), secondary_y = False) # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}
Spend:%{y:$.2s}"), secondary_y = True) # channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise') # channel_sales_spends_fig.update_xaxes(showgrid=False) # channel_sales_spends_fig.update_yaxes(showgrid=False) # else: # raw_df = st.session_state['raw_df'] # df = raw_df.sort_values(by='Date') # x = df.Date # scenario = class_from_dict(st.session_state['default_scenario_dict']) # _sales = scenario.constant + scenario.correction # channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) # channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}
Revenue:%{y:$.2s}"), secondary_y = False) # # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}
Spend:%{y:$.2s}"), secondary_y = True) # channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise') # channel_sales_spends_fig.update_xaxes(showgrid=False) # channel_sales_spends_fig.update_yaxes(showgrid=False) # return channel_sales_spends_fig # Define a shared color palette # def create_contribution_pie(): # color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6'] # total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]]) # # channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media'] # # # Assign colors from the limited palette to channels # colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)} # colors_map['Non Media'] = color_palette[5] # Assign fixed green color for 'Non Media' # # # Hardcoded values for Spends and Revenue # spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0] # revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16] # # # Add trace for Spends pie chart # total_contribution_fig.add_trace( # go.Pie( # labels=[channel_name for channel_name in channels_list], # values=spends_values, # marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]), # hole=0.3 # ), # row=1, col=1 # ) # # # Add trace for Revenue pie chart # total_contribution_fig.add_trace( # go.Pie( # labels=[channel_name for channel_name in channels_list], # values=revenue_values, # marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]), # hole=0.3 # ), # row=1, col=2 # ) # # total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}') # total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide') # return total_contribution_fig def create_contribuion_stacked_plot(scenario): weekly_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Prospects'], specs=[[{"type": "bar"}, {"type": "bar"}]]) raw_df = st.session_state['raw_df'] df = raw_df.sort_values(by='Date') x = df.Date weekly_spends_data = [] weekly_sales_data = [] for i, channel_name in enumerate(st.session_state['channels_list']): color = color_palette[i % len(color_palette)] weekly_spends_data.append(go.Bar( x=x, y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate, name=channel_name_formating(channel_name), hovertemplate="Date:%{x}
Spend:%{y:$.2s}", legendgroup=channel_name, marker_color=color, )) weekly_sales_data.append(go.Bar( x=x, y=scenario.channels[channel_name].actual_sales, name=channel_name_formating(channel_name), hovertemplate="Date:%{x}
Prospects:%{y:$.2s}", legendgroup=channel_name, showlegend=False, marker_color=color, )) for _d in weekly_spends_data: weekly_contribution_fig.add_trace(_d, row=1, col=1) for _d in weekly_sales_data: weekly_contribution_fig.add_trace(_d, row=1, col=2) weekly_contribution_fig.add_trace(go.Bar( x=x, y=scenario.constant + scenario.correction, name='Non Media', hovertemplate="Date:%{x}
Prospects:%{y:$.2s}", marker_color=color_palette[-1], ), row=1, col=2) weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribution by week', xaxis_title='Date') weekly_contribution_fig.update_xaxes(showgrid=False) weekly_contribution_fig.update_yaxes(showgrid=False) return weekly_contribution_fig def create_channel_spends_sales_plot(channel): if channel is not None: x = channel.dates _spends = channel.actual_spends * channel.conversion_rate _sales = channel.actual_sales channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) channel_sales_spends_fig.add_trace(go.Bar( x=x, y=_sales, marker_color=color_palette[1], # You can choose a color from the palette name='Prospects', hovertemplate="Date:%{x}
Prospects:%{y:$.2s}", ), secondary_y=False) channel_sales_spends_fig.add_trace(go.Scatter( x=x, y=_spends, line=dict(color=color_palette[3]), # You can choose another color from the palette name='Spends', hovertemplate="Date:%{x}
Spend:%{y:$.2s}", ), secondary_y=True) channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise') channel_sales_spends_fig.update_xaxes(showgrid=False) channel_sales_spends_fig.update_yaxes(showgrid=False) else: raw_df = st.session_state['raw_df'] df = raw_df.sort_values(by='Date') x = df.Date scenario = class_from_dict(st.session_state['default_scenario_dict']) _sales = scenario.constant + scenario.correction channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]]) channel_sales_spends_fig.add_trace(go.Bar( x=x, y=_sales, marker_color=color_palette[0], # You can choose a color from the palette name='Prospects', hovertemplate="Date:%{x}
Prospects:%{y:$.2s}", ), secondary_y=False) channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise') channel_sales_spends_fig.update_xaxes(showgrid=False) channel_sales_spends_fig.update_yaxes(showgrid=False) return channel_sales_spends_fig def format_numbers(value, n_decimals=1,include_indicator = True): if include_indicator: return f'{CURRENCY_INDICATOR} {numerize(value,n_decimals)}' else: return f'{numerize(value,n_decimals)}' def decimal_formater(num_string,n_decimals=1): parts = num_string.split('.') if len(parts) == 1: return num_string+'.' + '0'*n_decimals else: to_be_padded = n_decimals - len(parts[-1]) if to_be_padded > 0 : return num_string+'0'*to_be_padded else: return num_string def channel_name_formating(channel_name): name_mod = channel_name.replace('_', ' ') if name_mod.lower().endswith(' imp'): name_mod = name_mod.replace('Imp','Spend') elif name_mod.lower().endswith(' clicks'): name_mod = name_mod.replace('Clicks','Spend') return name_mod def send_email(email,message): s = smtplib.SMTP('smtp.gmail.com', 587) s.starttls() s.login("geethu4444@gmail.com", "jgydhpfusuremcol") s.sendmail("geethu4444@gmail.com", email, message) s.quit() if __name__ == "__main__": initialize_data()