import streamlit as st import pandas as pd from sklearn.preprocessing import MinMaxScaler import pickle from utilities import load_authenticator from utilities_with_panel import (set_header, overview_test_data_prep_panel, overview_test_data_prep_nonpanel, initialize_data, load_local_css, create_channel_summary, create_contribution_pie, create_contribuion_stacked_plot, create_channel_spends_sales_plot, format_numbers, channel_name_formating) import plotly.graph_objects as go import streamlit_authenticator as stauth import yaml from yaml import SafeLoader import time st.set_page_config(layout='wide') load_local_css('styles.css') set_header() def get_random_effects(media_data, panel_col, mdf): random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"]) for i, market in enumerate(media_data[panel_col].unique()): print(i, end='\r') intercept = mdf.random_effects[market].values[0] random_eff_df.loc[i, 'random_effect'] = intercept random_eff_df.loc[i, panel_col] = market return random_eff_df def process_train_and_test(train, test, features, panel_col, target_col): X1 = train[features] ss = MinMaxScaler() X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns) X1[panel_col] = train[panel_col] X1[target_col] = train[target_col] if test is not None: X2 = test[features] X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns) X2[panel_col] = test[panel_col] X2[target_col] = test[target_col] return X1, X2 return X1 def mdf_predict(X_df, mdf, random_eff_df) : X=X_df.copy() X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left') X['pred_fixed_effect'] = mdf.predict(X) X['pred'] = X['pred_fixed_effect'] + X['random_effect'] X.to_csv('Test/merged_df_contri.csv',index=False) X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True) return X target_col='Prospects' target='Prospects' # is_panel=False # is_panel = st.session_state['is_panel'] #panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column panel_col='Panel' date_col = 'date' #st.write(media_data) is_panel = True # panel_col='markets' date_col = 'date' for k, v in st.session_state.items(): if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): st.session_state[k] = v authenticator = st.session_state.get('authenticator') if authenticator is None: authenticator = load_authenticator() name, authentication_status, username = authenticator.login('Login', 'main') auth_status = st.session_state['authentication_status'] if auth_status: authenticator.logout('Logout', 'main') is_state_initiaized = st.session_state.get('initialized',False) if not is_state_initiaized: a=1 def panel_fetch(file_selected): raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM") if "Panel" in raw_data_mmm_df.columns: panel = list(set(raw_data_mmm_df["Panel"])) else: raw_data_mmm_df = None panel = None return panel def rerun(): st.rerun() metrics_selected='prospects' file_selected = ( f"Overview_data_test_panel@#{metrics_selected}.xlsx" ) panel_list = panel_fetch(file_selected) if "selected_markets" not in st.session_state: st.session_state['selected_markets']='DMA1' st.header('Overview of previous spends') selected_market= st.selectbox( "Select Markets", ["Total Market"] + panel_list ) initialize_data(target_col,selected_market) scenario = st.session_state['scenario'] raw_df = st.session_state['raw_df'] # st.write(scenario.actual_total_spends) # st.write(scenario.actual_total_sales) columns = st.columns((1,1,3)) with columns[0]: st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends))) ###print(f"##################### {scenario.actual_total_sales} ##################") with columns[1]: st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False)) actual_summary_df = create_channel_summary(scenario) actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating) columns = st.columns((2,1)) #with columns[0]: with st.expander('Channel wise overview'): st.markdown(actual_summary_df.style.set_table_styles( [{ 'selector': 'th', 'props': [('background-color', '#FFFFF')] }, { 'selector' : 'tr:nth-child(even)', 'props' : [('background-color', '#FFFFF')] }]).to_html(), unsafe_allow_html=True) st.markdown("
",unsafe_allow_html=True) ############################## st.plotly_chart(create_contribution_pie(scenario),use_container_width=True) st.markdown("
",unsafe_allow_html=True) ################################3 st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True) st.markdown("
",unsafe_allow_html=True) ####################################### selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating) selected_channel = scenario.channels.get(selected_channel_name,None) st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True) st.markdown("
",unsafe_allow_html=True) # elif auth_status == False: # st.error('Username/Password is incorrect') # if auth_status != True: # try: # username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password') # if username_forgot_pw: # st.success('New password sent securely') # # Random password to be transferred to user securely # elif username_forgot_pw == False: # st.error('Username not found') # except Exception as e: # st.error(e)