Spaces:
Sleeping
Sleeping
| # import subprocess | |
| # import sys | |
| # def install_conda_package(package_name, channel=None): | |
| # try: | |
| # if channel: | |
| # subprocess.check_call([sys.executable, "-m", "conda", "install", "-c", channel, package_name, "-y"]) | |
| # else: | |
| # subprocess.check_call([sys.executable, "-m", "conda", "install", package_name, "-y"]) | |
| # except subprocess.CalledProcessError as e: | |
| # # print(f"Failed to install {package_name}: {e}") | |
| # # Example usage | |
| # install_conda_package("plotly-orca", channel="plotly") | |
| import streamlit as st | |
| import pandas as pd | |
| from sklearn.preprocessing import MinMaxScaler | |
| import pickle | |
| import Streamlit_functions as sf | |
| from utilities import (load_authenticator) | |
| from utilities_with_panel import (set_header, | |
| overview_test_data_prep_panel, | |
| overview_test_data_prep_nonpanel, | |
| initialize_data, | |
| load_local_css, | |
| create_channel_summary, | |
| create_contribution_pie, | |
| create_contribuion_stacked_plot, | |
| create_channel_spends_sales_plot, | |
| format_numbers, | |
| channel_name_formating) | |
| import plotly.graph_objects as go | |
| import streamlit_authenticator as stauth | |
| import yaml | |
| from yaml import SafeLoader | |
| import time | |
| from datetime import datetime,timedelta | |
| from pptx import Presentation | |
| from pptx.util import Inches | |
| from io import BytesIO | |
| import plotly.io as pio | |
| import response_curves_model_quality as rc1 | |
| st.set_page_config(layout='wide') | |
| load_local_css('styles.css') | |
| set_header() | |
| st.title("Model Result Overview") | |
| def add_plotly_chart_to_slide(slide, fig, left, top, width, height): | |
| img_stream = BytesIO() | |
| pio.write_image(fig, img_stream, format='png') | |
| slide.shapes.add_picture(img_stream, left, top, width, height) | |
| def save_table(df,prs): | |
| # Add a blank slide | |
| slide = prs.slides.add_slide(prs.slide_layouts[6]) | |
| rows, cols = df.shape[0] + 1, df.shape[1] # +1 for the header row | |
| table = slide.shapes.add_table(rows, cols, Inches(1), Inches(1), Inches(10), Inches(7)).table | |
| # Set the header row | |
| for col_idx, col_name in enumerate(df.columns): | |
| table.cell(0, col_idx).text = col_name | |
| # Add the DataFrame rows to the table | |
| for row_idx, row in df.iterrows(): | |
| for col_idx, value in enumerate(row): | |
| # # # print(value) | |
| if isinstance(value, int): | |
| table.cell(row_idx + 1, col_idx).text = str(value) | |
| def save_ppt_file(fig1,fig2,fig3,fig4,fig6,fig7,figw,start_date,end_date,shares_df1,shares_df2): | |
| # Initialize PowerPoint presentation | |
| prs = Presentation() | |
| # save_table(shares_df1,prs) | |
| # save_table(shares_df2,prs) | |
| # Slide 1: Model Quality with Chart | |
| slide_1 = prs.slides.add_slide(prs.slide_layouts[6]) | |
| # title_1 = slide_1.shapes.title | |
| # title_1.text = "Distribution Of Spends And Prospects" | |
| # Add the Plotly chart to the slide | |
| add_plotly_chart_to_slide(slide_1, sf.pie_contributions(start_date,end_date), Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75)) | |
| add_plotly_chart_to_slide(prs.slides.add_slide(prs.slide_layouts[6]), sf.pie_spend(start_date,end_date), Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75)) | |
| # Slide 2: Media Data Elasticity | |
| slide_2 = prs.slides.add_slide(prs.slide_layouts[6]) | |
| # title_2 = slide_2.shapes.title | |
| # title_2.text = "Media Contribution" | |
| add_plotly_chart_to_slide(slide_2, fig2, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75)) | |
| slide_3 = prs.slides.add_slide(prs.slide_layouts[6]) | |
| # title_3 = slide_3.shapes.title | |
| # title_3.text = "Media Spends" | |
| add_plotly_chart_to_slide(slide_3, fig3, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75)) | |
| slide_4 = prs.slides.add_slide(prs.slide_layouts[6]) | |
| # title_4 = slide_4.shapes.title | |
| # title_4.text = "CPP Distribution" | |
| add_plotly_chart_to_slide(slide_4, fig4, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75)) | |
| if figw != None: | |
| slide_5 = prs.slides.add_slide(prs.slide_layouts[6]) | |
| # title_5 = slide_5.shapes.title | |
| # title_5.text = "Change in MMM Estimated Prospect Contributions" | |
| figw.update_layout( | |
| # title="Distribution Of Spends" | |
| title={ | |
| 'text': "Change In MMM Estimated Prospect Contribution", | |
| 'font': { | |
| 'size': 24, | |
| 'family': 'Arial', | |
| 'color': 'black', | |
| # 'bold': True | |
| } | |
| } | |
| ) | |
| add_plotly_chart_to_slide(slide_5, figw, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75)) | |
| else : | |
| slide_5 = prs.slides.add_slide(prs.slide_layouts[5]) | |
| title_5 = slide_5.shapes.title | |
| title_5.text = "Change in MMM Estimated Prospect Contributions" | |
| slide_6 = prs.slides.add_slide(prs.slide_layouts[6]) | |
| # title_6 = slide_6.shapes.title | |
| # title_6.text = "Base Decomposition" | |
| add_plotly_chart_to_slide(slide_6, fig6, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75)) | |
| slide_7 = prs.slides.add_slide(prs.slide_layouts[6]) | |
| # title_7 = slide_7.shapes.title | |
| # title_7.text = "Media Decomposition" | |
| add_plotly_chart_to_slide(slide_7, fig7, Inches(0.25), Inches(0.25), width=Inches(9.25), height=Inches(6.75)) | |
| # prs.save('MMM_Model_Result Overview.pptx') | |
| # # print("PowerPoint slides created successfully.") | |
| # Save to a BytesIO object | |
| ppt_stream = BytesIO() | |
| prs.save(ppt_stream) | |
| ppt_stream.seek(0) | |
| return ppt_stream.getvalue() | |
| def get_random_effects(media_data, panel_col, mdf): | |
| random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"]) | |
| for i, market in enumerate(media_data[panel_col].unique()): | |
| # # # print(i, end='\r') | |
| intercept = mdf.random_effects[market].values[0] | |
| random_eff_df.loc[i, 'random_effect'] = intercept | |
| random_eff_df.loc[i, panel_col] = market | |
| return random_eff_df | |
| def process_train_and_test(train, test, features, panel_col, target_col): | |
| X1 = train[features] | |
| ss = MinMaxScaler() | |
| X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns) | |
| X1[panel_col] = train[panel_col] | |
| X1[target_col] = train[target_col] | |
| if test is not None: | |
| X2 = test[features] | |
| X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns) | |
| X2[panel_col] = test[panel_col] | |
| X2[target_col] = test[target_col] | |
| return X1, X2 | |
| return X1 | |
| def mdf_predict(X_df, mdf, random_eff_df) : | |
| X=X_df.copy() | |
| X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left') | |
| X['pred_fixed_effect'] = mdf.predict(X) | |
| X['pred'] = X['pred_fixed_effect'] + X['random_effect'] | |
| X.to_csv('Test/merged_df_contri.csv',index=False) | |
| X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True) | |
| return X | |
| target_col='Prospects' | |
| target='Prospects' | |
| # is_panel=False | |
| # is_panel = st.session_state['is_panel'] | |
| #panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column | |
| panel_col='Panel' | |
| date_col = 'date' | |
| #st.write(media_data) | |
| is_panel = True | |
| # panel_col='markets' | |
| date_col = 'date' | |
| for k, v in st.session_state.items(): | |
| if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): | |
| st.session_state[k] = v | |
| authenticator = st.session_state.get('authenticator') | |
| if authenticator is None: | |
| authenticator = load_authenticator() | |
| name, authentication_status, username = authenticator.login('Login', 'main') | |
| auth_status = st.session_state['authentication_status'] | |
| if auth_status: | |
| authenticator.logout('Logout', 'main') | |
| is_state_initiaized = st.session_state.get('initialized',False) | |
| if not is_state_initiaized: | |
| a=1 | |
| with st.expander("View Channel Wise Spend And Prospect Analysis "): | |
| # Create two columns for start date and end date input | |
| col1, col2 = st.columns(2) | |
| min_date,max_date = sf.get_date_range() | |
| # st.write(min_date,max_date) | |
| # min_date = datetime(2023, 1, 1) | |
| # max_date = datetime(2024, 12, 31) | |
| default_date1,default_date2 = sf.get_default_dates() | |
| # st.write(default_date1,default_date2) | |
| with col1: | |
| start_date = st.date_input("Start Date: ",value=default_date1,min_value=min_date, | |
| max_value=max_date) | |
| with col2: | |
| end_date = st.date_input("End Date: ",value = default_date2,min_value=min_date, | |
| max_value=max_date) | |
| # col1, col2 = st.columns(2) | |
| # with col1: | |
| # fig = sf.pie_spend(start_date,end_date) | |
| # st.plotly_chart(fig,use_container_width=True) | |
| # with col2: | |
| # fig = sf.pie_contributions(start_date,end_date) | |
| # st.plotly_chart(fig,use_container_width=True) | |
| # st.header("Distribution of Spends and Contributions") | |
| fig1 = sf.pie_charts(start_date,end_date) | |
| st.plotly_chart(fig1,use_container_width=True) | |
| ## Channel Contribution Bar Chart | |
| fig2 =sf.channel_contribution(start_date,end_date) | |
| st.plotly_chart(fig2,use_container_width=True) | |
| fig3 = sf.chanel_spends(start_date,end_date) | |
| st.plotly_chart(fig3,use_container_width=True) | |
| # Format first three rows in percentage format | |
| # styled_df = sf.shares_table_func(shares_df) | |
| # # styled_df = styled_df.round(0).astype(int) | |
| # styled_df.iloc[:3] = (styled_df.iloc[:3]).astype(int) | |
| # # Round next two rows to two decimal places | |
| # styled_df.iloc[3:5] = styled_df.iloc[3:5].round(0).astype(str) | |
| # st.table(styled_df) | |
| shares_df = sf.shares_df_func(start_date,end_date) | |
| shares_df1 = sf.shares_table_func(shares_df) | |
| st.dataframe(sf.shares_table_func(shares_df),use_container_width=True) | |
| shares_df2 = sf.eff_table_func(shares_df) | |
| st.dataframe(sf.eff_table_func(shares_df).style.format({"TOTAL SPEND": "{:,.0f}", "TOTAL SUPPORT": "{:,.0f}", "TOTAL CONTRIBUTION": "{:,.0f}"}),use_container_width=True) | |
| ### CPP CHART | |
| fig4 = sf.cpp(start_date,end_date) | |
| st.plotly_chart(fig4,use_container_width=True) | |
| with st.expander("View Change in MMM Estimated Prospect Contributions Analysis"): | |
| data_selection_type = st.radio("Select Input Type",["Compare Monthly Change", "Compare Custom Range"]) | |
| waterfall_start_date,waterfall_end_date = start_date,end_date | |
| # Dropdown menu options | |
| st.markdown("<h1 style='font-size:28px;'>Change in MMM Estimated Prospect Contributions</h1>", unsafe_allow_html=True) | |
| if data_selection_type == "Compare Monthly Change": | |
| options = [ | |
| "Month on Month", | |
| "Year on Year"] | |
| col1, col2 = st.columns(2) | |
| # Create a dropdown menu | |
| with col1: | |
| selected_option = st.selectbox('Select a comparison', options) | |
| with col2: | |
| st.markdown("""</br>""",unsafe_allow_html=True) | |
| if selected_option == "Month on Month" : | |
| st.markdown( | |
| f""" | |
| <div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;"> | |
| <strong> Comparision of current month spends to previous month spends</strong> | |
| </div> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| else : | |
| st.markdown( | |
| f""" | |
| <div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;"> | |
| <strong> Comparision of current month spends to the same month in previous year</strong> | |
| </div> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # Waterfall chart | |
| def get_month_year_list(start_date, end_date): | |
| # Generate a range of dates from start_date to end_date with a monthly frequency | |
| dates = pd.date_range(start=start_date, end=end_date, freq='MS') # 'MS' is month start frequency | |
| # Extract month and year from each date and create a list of tuples | |
| month_year_list = [(date.month, date.year) for date in dates] | |
| return month_year_list | |
| def get_start_end_dates(month, year): | |
| start_date = datetime(year, month, 1).date() | |
| if month == 12: | |
| end_date = datetime(year + 1, 1, 1).date() - timedelta(days=1) | |
| else: | |
| end_date = datetime(year, month + 1, 1).date() - timedelta(days=1) | |
| return start_date, end_date | |
| month_year_list = get_month_year_list(start_date, end_date) | |
| dropdown_options = [f"{date.strftime('%B %Y')}" for date in pd.date_range(start=start_date, end=end_date, freq='MS')] | |
| waterfall_option = st.selectbox("Select a month:", dropdown_options) | |
| waterfall_date = datetime.strptime(waterfall_option, "%B %Y") | |
| waterfall_month = waterfall_date.month | |
| waterfall_year = waterfall_date.year | |
| waterfall_start_date, waterfall_end_date = get_start_end_dates(waterfall_month, waterfall_year) | |
| # st.write("abc") | |
| # figw = sf.waterfall(waterfall_start_date,waterfall_end_date) | |
| figw= sf.waterfall(waterfall_start_date,waterfall_end_date,selected_option) | |
| st.plotly_chart(figw,use_container_width=True) | |
| elif data_selection_type == "Compare Custom Range": | |
| col1, col2 = st.columns(2) | |
| min_date,max_date = sf.get_date_range() | |
| with col1: | |
| st.write("Select Time Period 1") | |
| sc1,sc2 = st.columns(2) | |
| with sc1: | |
| waterfall_start_date1 = st.date_input("Start Date 1: ",value=start_date,min_value=min_date, | |
| max_value=max_date) | |
| with sc2: | |
| waterfall_end_date1 = st.date_input("End Date 1: ",value = end_date,min_value=min_date, | |
| max_value=max_date) | |
| with col2: | |
| st.write("Select Time Period 2") | |
| ec1,ec2 = st.columns(2) | |
| with ec1: | |
| waterfall_start_date2 = st.date_input("Start Date 2: ",value=end_date-timedelta(days = -1),min_value=min_date, | |
| max_value=max_date) | |
| with ec2: | |
| diff = min((start_date-end_date).days,-30) | |
| waterfall_end_date2 = st.date_input("End Date 2: ",value = start_date,min_value=min_date, | |
| max_value=max_date) | |
| try: | |
| figw= sf.waterfall2(waterfall_start_date1,waterfall_end_date1,waterfall_start_date2,waterfall_end_date2) | |
| st.plotly_chart(figw,use_container_width=True) | |
| except: | |
| st.warning("Previous data does not exist") | |
| # Waterfall table | |
| # shares_df = sf.shares_df_func(waterfall_start_date,waterfall_end_date) | |
| st.table(sf.waterfall_table_func(shares_df).style.format("{:.0%}")) | |
| with st.expander("View Decomposition Analysis"): | |
| ### Base decomp CHART | |
| fig6 = sf.base_decomp() | |
| st.plotly_chart(fig6,use_container_width=True) | |
| ### Media decomp CHART | |
| fig7 = sf.media_decomp() | |
| st.plotly_chart(fig7,use_container_width=True) | |
| if st.button("Prepare Download Of Analysis"): | |
| ppt_file = save_ppt_file(fig1,fig2,fig3,fig4,fig6,fig7,figw,start_date,end_date,shares_df1,shares_df2) | |
| # Add a download button | |
| st.download_button( | |
| label="Download Analysis", | |
| data=ppt_file, | |
| file_name="MMM_Model_Result Overview.pptx", | |
| mime="application/vnd.openxmlformats-officedocument.presentationml.presentation" | |
| ) | |