import logging import time from pathlib import Path import gradio as gr import nltk from cleantext import clean from summarize import load_model_and_tokenizer, summarize_via_tokenbatches from utils import load_example_filenames, truncate_word_count _here = Path(__file__).parent nltk.download("stopwords") # TODO=find where this requirement originates from logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) def proc_submission( input_text: str, model_type: str, num_beams, token_batch_length, length_penalty, repetition_penalty, no_repeat_ngram_size, max_input_length: int = 768, ): """ proc_submission - a helper function for the gradio module to process submissions Args: input_text (str): the input text to summarize model_size (str): the size of the model to use num_beams (int): the number of beams to use token_batch_length (int): the length of the token batches to use length_penalty (float): the length penalty to use repetition_penalty (float): the repetition penalty to use no_repeat_ngram_size (int): the no repeat ngram size to use max_input_length (int, optional): the maximum input length to use. Defaults to 768. Returns: str in HTML format, string of the summary, str of score """ settings = { "length_penalty": float(length_penalty), "repetition_penalty": float(repetition_penalty), "no_repeat_ngram_size": int(no_repeat_ngram_size), "encoder_no_repeat_ngram_size": 4, "num_beams": int(num_beams), "min_length": 11, "max_length": int(token_batch_length // 4), "early_stopping": True, #"do_sample": False, } st = time.perf_counter() history = {} clean_text = clean(input_text, lower=False) #max_input_length = 2048 if model_type == "tldr" else max_input_length processed = truncate_word_count(clean_text, max_input_length) if processed["was_truncated"]: tr_in = processed["truncated_text"] msg = f"Input text was truncated to {max_input_length} words (based on whitespace)" logging.warning(msg) history["WARNING"] = msg else: tr_in = input_text msg = None _summaries = summarize_via_tokenbatches( tr_in, model_tldr if model_type == "tldr" else model, tokenizer_tldr if model_type == "tldr" else tokenizer, batch_length=token_batch_length, **settings, ) sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)] sum_scores = [ f" - Section {i}: {round(s['summary_score'],4)}" for i, s in enumerate(_summaries) ] sum_text_out = "\n".join(sum_text) history["Summary Scores"] = "

" scores_out = "\n".join(sum_scores) rt = round((time.perf_counter() - st) / 60, 2) print(f"Runtime: {rt} minutes") html = "" html += f"

Runtime: {rt} minutes on CPU

" if msg is not None: html += f"

WARNING:


{msg}

" html += "" return html, sum_text_out, scores_out def load_single_example_text( example_path: str or Path, ): """ load_single_example - a helper function for the gradio module to load examples Returns: list of str, the examples """ global name_to_path full_ex_path = name_to_path[example_path] full_ex_path = Path(full_ex_path) # load the examples into a list with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f: raw_text = f.read() text = clean(raw_text, lower=False) return text def load_uploaded_file(file_obj): """ load_uploaded_file - process an uploaded file Args: file_obj (POTENTIALLY list): Gradio file object inside a list Returns: str, the uploaded file contents """ # file_path = Path(file_obj[0].name) # check if mysterious file object is a list if isinstance(file_obj, list): file_obj = file_obj[0] file_path = Path(file_obj.name) try: with open(file_path, "r", encoding="utf-8", errors="ignore") as f: raw_text = f.read() text = clean(raw_text, lower=False) return text except Exception as e: logging.info(f"Trying to load file with path {file_path}, error: {e}") return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8." if __name__ == "__main__": model, tokenizer = load_model_and_tokenizer("Blaise-g/longt5_tglobal_large_sumpubmed") model_tldr, tokenizer_tldr = load_model_and_tokenizer("Blaise-g/longt5_tglobal_large_scitldr") name_to_path = load_example_filenames(_here / "examples") logging.info(f"Loaded {len(name_to_path)} examples") demo = gr.Blocks() with demo: gr.Markdown("#Automatic summarization of biomedical research papers with neural abstractive methods into a long and comprehensive synopsis or extreme TLDR summary version") gr.Markdown( "A rather simple demo using an ad-hoc fine-tuned LongT5 or LED model to summarize long biomedical articles (or any scientific text related to the biomedical domain) into a detailed or extreme TLDR version." ) with gr.Column(): gr.Markdown("## Load Inputs & Select Parameters") gr.Markdown( "Enter text below in the text area. The text will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). Optionally load an example below or upload a file." ) with gr.Row(): model_size = gr.Radio( choices=["tldr", "sumpubmed"], label="Model Variant", value="large" ) num_beams = gr.Radio( choices=[2, 3, 4], label="Beam Search: # of Beams", value=2, ) gr.Markdown( "_The LED model is less performant than the LongT5 model, but is faster and will accept up to 2048 words per input (Large model accepts up to 768)._" ) with gr.Row(): length_penalty = gr.inputs.Slider( minimum=0.5, maximum=1.0, label="length penalty", default=0.7, step=0.05, ) token_batch_length = gr.Radio( choices=[512, 768, 1024], label="token batch length", value=512, ) with gr.Row(): repetition_penalty = gr.inputs.Slider( minimum=1.0, maximum=5.0, label="repetition penalty", default=3.5, step=0.1, ) no_repeat_ngram_size = gr.Radio( choices=[2, 3, 4], label="no repeat ngram size", value=3, ) with gr.Row(): example_name = gr.Dropdown( list(name_to_path.keys()), label="Choose an Example", ) load_examples_button = gr.Button( "Load Example", ) input_text = gr.Textbox( lines=6, label="Input Text (for summarization)", placeholder="Enter any scientific text to be condensed into a long and comprehensive digested format or an extreme TLDR summary version, the text will be preprocessed and truncated if necessary to fit within the computational constraints. The models were trained to handle long scientific papers but generalize reasonably well also to shorter text documents like abstracts with an appropriate. Might take a well to produce long summaries :)", ) gr.Markdown("Upload your own file:") with gr.Row(): uploaded_file = gr.File( label="Upload a text file", file_count="single", type="file", ) load_file_button = gr.Button("Load Uploaded File") gr.Markdown("---") with gr.Column(): gr.Markdown("## Generate Summary") gr.Markdown( "Summary generation should take approximately 1-2 minutes for most settings." ) summarize_button = gr.Button( "Summarize!", variant="primary", ) output_text = gr.HTML("

Output will appear below:

") gr.Markdown("### Summary Output") summary_text = gr.Textbox( label="Summary", placeholder="The generated summary will appear here" ) gr.Markdown( "The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:" ) summary_scores = gr.Textbox( label="Summary Scores", placeholder="Summary scores will appear here" ) gr.Markdown("---") with gr.Column(): gr.Markdown("## About the Model") gr.Markdown( "- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage." ) gr.Markdown( "- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. However, increasing these will also increase the amount of time it takes to generate a summary. The `length_penalty` and `repetition_penalty` parameters are also important for the model to generate good summaries." ) gr.Markdown( "- The model can be " ) gr.Markdown("---") load_examples_button.click( fn=load_single_example_text, inputs=[example_name], outputs=[input_text] ) load_file_button.click( fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text] ) summarize_button.click( fn=proc_submission, inputs=[ input_text, model_size, num_beams, token_batch_length, length_penalty, repetition_penalty, no_repeat_ngram_size, ], outputs=[output_text, summary_text, summary_scores], ) demo.launch(enable_queue=True, share=True)