File size: 19,682 Bytes
7c3768c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

# streamlit_app.py

import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go

# ---------------------------
# Function Definitions
# ---------------------------

def create_histogram(df):
    """Creates a histogram for Age Distribution."""
    fig, ax = plt.subplots(figsize=(5, 3.5))
    sns.histplot(df['anchor_age'], bins=30, kde=True, color='skyblue', ax=ax)
    ax.set_xlabel("Age")
    ax.set_ylabel("Number of Admissions")
    ax.set_title("Age Distribution")
    plt.tight_layout()
    st.pyplot(fig)

def create_gender_bar_chart(df):
    """Creates a bar chart for Gender Distribution."""
    fig, ax = plt.subplots(figsize=(5, 3.5))
    sns.countplot(data=df, x='gender', palette='pastel', ax=ax)
    ax.set_title("Gender Distribution")
    ax.set_xlabel("Gender")
    ax.set_ylabel("Number of Admissions")
    plt.tight_layout()
    st.pyplot(fig)

def create_stacked_bar_admission_race(df):
    """Creates a stacked bar chart for Admission Types by Race."""
    admission_race = df.groupby(['race', 'admission_type']).size().unstack(fill_value=0)
    admission_race_percent = admission_race.div(admission_race.sum(axis=1), axis=0) * 100

    admission_race_percent.plot(kind='bar', stacked=True, figsize=(8, 6), colormap='tab20')
    plt.title("Admission Types by Race (%)")
    plt.xlabel("Race")
    plt.ylabel("Percentage of Admission Types")
    plt.legend(title='Admission Type', bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.tight_layout()
    st.pyplot(plt.gcf())

def create_los_by_race(df):
    """Creates a box plot for Length of Stay by Race."""
    fig, ax = plt.subplots(figsize=(6, 4))
    sns.boxplot(data=df, x='race', y='los', palette='Pastel1', ax=ax)
    ax.set_title("Length of Stay by Race")
    ax.set_xlabel("Race")
    ax.set_ylabel("Length of Stay (Days)")
    ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
    plt.tight_layout()
    st.pyplot(fig)

def create_correlation_heatmap(df):
    """Creates a correlation heatmap for numerical features."""
    numerical_features = df[['anchor_age', 'los']]
    corr_matrix = numerical_features.corr()

    fig, ax = plt.subplots(figsize=(3.5, 3))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f", ax=ax)
    ax.set_title("Correlation Heatmap")
    plt.tight_layout()
    st.pyplot(fig)

def create_time_series_heatmap(df):
    """Creates an admissions over time heatmap."""
    month_order = ['January', 'February', 'March', 'April', 'May', 'June',
                   'July', 'August', 'September', 'October', 'November', 'December']
    df['admission_month'] = pd.Categorical(df['admission_month'], categories=month_order, ordered=True)

    heatmap_df = df.groupby(['admission_year', 'admission_month']).size().reset_index(name='counts')

    fig = px.density_heatmap(
        heatmap_df,
        x='admission_month',
        y='admission_year',
        z='counts',
        histfunc='sum',
        title='Admissions Over Time',
        labels={'counts': 'Number of Admissions'},
        color_continuous_scale='Blues'
    )

    fig.update_xaxes(categoryorder='array', categoryarray=month_order)
    fig.update_layout(yaxis=dict(autorange='reversed'))
    fig.update_traces(colorbar=dict(title='Admissions'))
    st.plotly_chart(fig, use_container_width=True)

def create_mortality_by_race(df):
    """Creates a bar chart for Mortality Rate by Race."""
    mortality_race = df.groupby('race')['hospital_expire_flag'].mean().reset_index()
    mortality_race['mortality_rate'] = mortality_race['hospital_expire_flag'] * 100

    fig, ax = plt.subplots(figsize=(6, 4))
    sns.barplot(data=mortality_race, x='race', y='mortality_rate', palette='Set2', ax=ax)
    ax.set_title("Mortality Rate by Race")
    ax.set_xlabel("Race")
    ax.set_ylabel("Mortality Rate (%)")
    ax.set_xticklabels(ax.get_xticklabels(), rotation=45)
    plt.tight_layout()
    st.pyplot(fig)

def create_mortality_by_gender(df):
    """Creates a bar chart for Mortality Rate by Gender."""
    mortality_gender = df.groupby('gender')['hospital_expire_flag'].mean().reset_index()
    mortality_gender['mortality_rate'] = mortality_gender['hospital_expire_flag'] * 100

    fig, ax = plt.subplots(figsize=(6, 4))
    sns.barplot(data=mortality_gender, x='gender', y='mortality_rate', palette='Set3', ax=ax)
    ax.set_title("Mortality Rate by Gender")
    ax.set_xlabel("Gender")
    ax.set_ylabel("Mortality Rate (%)")
    plt.tight_layout()
    st.pyplot(fig)

def create_mortality_by_age_group(df):
    """Creates a bar chart for Mortality Rate by Age Group."""
    # Define age bins and labels
    bins = [0, 30, 50, 70, 90, 120]
    labels = ['0-30', '31-50', '51-70', '71-90', '91-120']
    df['age_group'] = pd.cut(df['anchor_age'], bins=bins, labels=labels, right=False)

    mortality_age = df.groupby('age_group')['hospital_expire_flag'].mean().reset_index()
    mortality_age['mortality_rate'] = mortality_age['hospital_expire_flag'] * 100

    fig, ax = plt.subplots(figsize=(6, 4))
    sns.barplot(data=mortality_age, x='age_group', y='mortality_rate', palette='coolwarm', ax=ax)
    ax.set_title("Mortality Rate by Age Group")
    ax.set_xlabel("Age Group")
    ax.set_ylabel("Mortality Rate (%)")
    plt.tight_layout()
    st.pyplot(fig)

def create_violin_age_race_mortality(df):
    """Creates a violin plot for Age Distribution by Race and Mortality."""
    fig, ax = plt.subplots(figsize=(8, 6))
    sns.violinplot(
        data=df,
        x='race',
        y='anchor_age',
        hue='hospital_expire_flag',
        split=True,
        palette='Set2',
        ax=ax
    )
    ax.set_title("Age Distribution by Race and Mortality")
    ax.set_xlabel("Race")
    ax.set_ylabel("Age")
    ax.legend(title='Mortality', loc='upper right')
    plt.tight_layout()
    st.pyplot(fig)

def create_heatmap_race_gender_mortality(df):
    """Creates a heatmap for Mortality Rate by Race and Gender."""
    pivot_table = df.pivot_table(
        index='race',
        columns='gender',
        values='hospital_expire_flag',
        aggfunc='mean'
    ) * 100  # Convert to percentage

    fig, ax = plt.subplots(figsize=(8, 6))
    sns.heatmap(pivot_table, annot=True, fmt=".1f", cmap='YlOrRd', ax=ax)
    ax.set_title("Mortality Rate by Race and Gender (%)")
    ax.set_xlabel("Gender")
    ax.set_ylabel("Race")
    plt.tight_layout()
    st.pyplot(fig)

def create_parallel_coordinates(df):
    """Creates a parallel coordinates plot for Demographics and Outcomes."""
    # Select relevant numerical features
    parallel_df = df[['anchor_age', 'los', 'hospital_expire_flag']].copy()

    # Encode categorical variables numerically
    parallel_df['race_code'] = df['race'].astype('category').cat.codes
    parallel_df['gender_code'] = df['gender'].astype('category').cat.codes

    # Create the parallel coordinates plot
    fig = px.parallel_coordinates(
        parallel_df,
        color='hospital_expire_flag',
        labels={
            'anchor_age': 'Age',
            'los': 'Length of Stay',
            'hospital_expire_flag': 'Mortality',
            'race_code': 'Race',
            'gender_code': 'Gender'
        },
        color_continuous_scale=px.colors.diverging.Tealrose,
        color_continuous_midpoint=0.5
    )

    fig.update_layout(title='Parallel Coordinates Plot of Demographics and Outcomes')
    st.plotly_chart(fig, use_container_width=True)

def create_treemap_race_mortality(df):
    """Creates a treemap for Race and Mortality."""
    treemap_df = df.groupby(['race', 'hospital_expire_flag']).size().reset_index(name='counts')
    treemap_df['Mortality'] = treemap_df['hospital_expire_flag'].map({0: 'Survived', 1: 'Died'})

    fig = px.treemap(
        treemap_df,
        path=['race', 'Mortality'],
        values='counts',
        color='Mortality',
        color_discrete_map={'Survived':'#66b3ff','Died':'#ff6666'},
        title='Treemap of Race and Mortality'
    )
    fig.update_layout(margin = dict(t=30, l=0, r=0, b=0))
    st.plotly_chart(fig, use_container_width=True)

def create_sankey_race_mortality(df):
    """Creates a Sankey diagram for Race to Mortality Outcomes."""
    sankey_df = df.groupby(['race', 'hospital_expire_flag']).size().reset_index(name='counts')

    # Map 'hospital_expire_flag' to 'Mortality' status
    sankey_df['Mortality'] = sankey_df['hospital_expire_flag'].map({0: 'Survived', 1: 'Died'})

    # Create source and target labels
    source = sankey_df['race'].tolist()
    target = sankey_df['Mortality'].tolist()
    values = sankey_df['counts'].tolist()

    # Create a list of unique labels ensuring no duplicates
    unique_races = sankey_df['race'].unique().tolist()
    unique_mortality = sankey_df['Mortality'].unique().tolist()
    labels = unique_races + unique_mortality


    # Create a mapping from label to index for efficient lookup
    label_to_index = {label: idx for idx, label in enumerate(labels)}

    # Map source and target labels to their corresponding indices
    source_indices = [label_to_index[s] for s in source]
    target_indices = [label_to_index[t] for t in target]

    # Optionally, define colors for different node types
    # For example, races could have one color and mortality outcomes another
    race_color = "#FFA07A"  # Light Salmon
    mortality_color = "#20B2AA"  # Light Sea Green
    node_colors = [race_color] * len(unique_races) + [mortality_color] * len(unique_mortality)

    # Create the Sankey diagram
    fig = go.Figure(data=[go.Sankey(
        node=dict(
            pad=15,
            thickness=20,
            line=dict(color="black", width=0.5),
            label=labels,
            color=node_colors
        ),
        link=dict(
            source=source_indices,
            target=target_indices,
            value=values
        )
    )])

    # Add title to the layout
    fig.update_layout(
        title_text="Sankey Diagram of Race and Mortality Outcomes",
        font_size=10
    )

    st.plotly_chart(fig, use_container_width=True)

# ---------------------------
# Streamlit Application
# ---------------------------

# Set Streamlit page configuration
st.set_page_config(
    page_title="MIMIC-IV ICU Patient Data Dashboard",
    layout="wide",
    initial_sidebar_state="expanded",
)

# Title and Description
st.title("MIMIC-IV ICU Patient Data Dashboard")
st.markdown("""
Explore the general feature distribution and outcome metrics of ICU patients from the MIMIC-IV dataset. Utilize the sidebar filters to customize the data view and interact with various visualizations to uncover patterns and insights.
""")

# Sidebar Filters
st.sidebar.header("Filter Data")

@st.cache_data
def load_data():
    # Load the dataframes (update the paths as necessary)
    admissions_df = pd.read_csv('data/admissions.csv')
    patients_df = pd.read_csv('data/patients.csv')
    # diagnoses_icd_df = pd.read_csv('data/diagnoses_icd.csv')
    # pharmacy_df = pd.read_csv('data/pharmacy.csv')
    # prescriptions_df = pd.read_csv('data/prescriptions.csv')
    # d_hcpcs_df = pd.read_csv('data/d_hcpcs.csv')
    # poe_detail_df = pd.read_csv('data/poe_detail.csv')
    # provider_df = pd.read_csv('data/provider.csv')
    
    race_map = {"WHITE":"WHITE",
    "BLACK/AFRICAN AMERICAN":"BLACK",
    "OTHER":"OTHER",
    "UNKNOWN":"UNKNOWN",
    "HISPANIC/LATINO - PUERTO RICAN":"HISPANIC",
    "WHITE - OTHER EUROPEAN":"WHITE",
    "HISPANIC OR LATINO":"HISPANIC",
    "ASIAN":"ASIAN",
    "ASIAN - CHINESE":"ASIAN",
    "WHITE - RUSSIAN":"WHITE",
    "BLACK/CAPE VERDEAN":"BLACK",
    "HISPANIC/LATINO - DOMINICAN":"HISPANIC",
    "BLACK/CARIBBEAN ISLAND":"BLACK",
    "BLACK/AFRICAN":"BLACK",
    "PATIENT DECLINED TO ANSWER":"UNKNOWN",
    "UNABLE TO OBTAIN":"UNKNOWN",
    "PORTUGUESE":"WHITE",
    "ASIAN - SOUTH EAST ASIAN":"ASIAN",
    "HISPANIC/LATINO - GUATEMALAN":"HISPANIC",
    "ASIAN - ASIAN INDIAN":"ASIAN",
    "WHITE - EASTERN EUROPEAN":"WHITE",
    "WHITE - BRAZILIAN":"WHITE",
    "AMERICAN INDIAN/ALASKA NATIVE":"NATIVES",
    "HISPANIC/LATINO - SALVADORAN":"HISPANIC",
    "HISPANIC/LATINO - MEXICAN":"HISPANIC",
    "HISPANIC/LATINO - COLUMBIAN":"HISPANIC",
    "MULTIPLE RACE/ETHNICITY":"MULTI-ETHINIC",
    "HISPANIC/LATINO - HONDURAN":"HISPANIC",
    "ASIAN - KOREAN":"ASIAN",
    "SOUTH AMERICAN":"HISPANIC",
    "HISPANIC/LATINO - CUBAN":"HISPANIC",
    "HISPANIC/LATINO - CENTRAL AMERICAN":"HISPANIC",
    "NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER":"NATIVES"}

    admissions_df['race'] = admissions_df['race'].map(race_map) 
    # Merge admissions and patients data on 'subject_id'
    merged_df = pd.merge(admissions_df, patients_df, on='subject_id', how='left')
    
    # Handle missing values by dropping rows with critical missing data
    merged_df = merged_df.dropna(subset=['anchor_age', 'gender', 'race', 'hospital_expire_flag'])
    
    # Convert datetime columns
    merged_df['admittime'] = pd.to_datetime(merged_df['admittime'])
    merged_df['dischtime'] = pd.to_datetime(merged_df['dischtime'])
    merged_df['deathtime'] = pd.to_datetime(merged_df['deathtime'], errors='coerce')  # Some may not have deathtime
    
    # Create derived features
    merged_df['los'] = (merged_df['dischtime'] - merged_df['admittime']).dt.days
    merged_df['admission_year'] = merged_df['admittime'].dt.year
    merged_df['admission_month'] = merged_df['admittime'].dt.month_name()
    merged_df['admittime_date'] = merged_df['admittime'].dt.date
    
    return merged_df

merged_df = load_data()

# Sidebar Filters Function
def add_sidebar_filters(df):
    # Admission Types
    admission_types = sorted(df['admission_type'].unique())
    selected_admission_types = st.sidebar.multiselect(
        "Select Admission Type(s):",
        options=admission_types,
        default=admission_types
    )
    
    # Insurance Types
    insurance_types = sorted(df['insurance'].unique())
    selected_insurance_types = st.sidebar.multiselect(
        "Select Insurance Type(s):",
        options=insurance_types,
        default=insurance_types
    )
    
    # Gender
    genders = sorted(df['gender'].unique())
    selected_genders = st.sidebar.multiselect(
        "Select Gender(s):",
        options=genders,
        default=genders
    )
    
    # Race
    races = sorted(df['race'].unique())
    selected_races = st.sidebar.multiselect(
        "Select Race(s):",
        options=races,
        default=races
    )
    
    # Year Range
    min_year = int(df['admission_year'].min())
    max_year = int(df['admission_year'].max())
    selected_years = st.sidebar.slider(
        "Select Admission Year Range:",
        min_value=min_year,
        max_value=max_year,
        value=(min_year, max_year)
    )
    
    # Apply Filters
    filtered_df = df[
        (df['admission_type'].isin(selected_admission_types)) &
        (df['insurance'].isin(selected_insurance_types)) &
        (df['gender'].isin(selected_genders)) &
        (df['race'].isin(selected_races)) &
        (df['admission_year'] >= selected_years[0]) &
        (df['admission_year'] <= selected_years[1])
    ]
    
    return filtered_df

filtered_df = add_sidebar_filters(merged_df)

# Display Summary Statistics for Q1
st.header("Summary Statistics")

# Create four columns for metrics
col1, col2, col3, col4 = st.columns(4)

with col1:
    total_admissions = filtered_df.shape[0]
    st.metric("Total Admissions", f"{total_admissions:,}")

with col2:
    average_age = filtered_df['anchor_age'].mean()
    st.metric("Average Age", f"{average_age:.2f} years")

with col3:
    gender_counts = filtered_df['gender'].value_counts()
    male_count = gender_counts.get('M', 0)
    female_count = gender_counts.get('F', 0)
    st.metric("Male Patients", f"{male_count:,}")
    st.metric("Female Patients", f"{female_count:,}")

with col4:
    mortality_rate = filtered_df['hospital_expire_flag'].mean() * 100  # Percentage
    st.metric("Mortality Rate", f"{mortality_rate:.2f}%")

st.markdown("---")

# Create Tabs for Q1 and Q2
tabs = st.tabs(["General Overview", "Potential Biases"])

# ---------------------------
# Q1: General Overview
# ---------------------------
with tabs[0]:
    st.subheader("General Feature Distribution and Outcome Metrics")
    
    # Define the number of columns per row
    num_cols = 2
    
    # Define all Q1 plots in a list with titles and plot-generating functions
    q1_plots = [
        {
            "title": "Age Distribution of ICU Patients",
            "plot": lambda: create_histogram(filtered_df)
        },
        {
            "title": "Gender Distribution of ICU Patients",
            "plot": lambda: create_gender_bar_chart(filtered_df)
        },
        {
            "title": "Admission Types by Race",
            "plot": lambda: create_stacked_bar_admission_race(filtered_df)
        },
        {
            "title": "Length of Stay by Race",
            "plot": lambda: create_los_by_race(filtered_df)
        },
        {
            "title": "Correlation Heatmap of Age and LOS",
            "plot": lambda: create_correlation_heatmap(filtered_df)
        },
        {
            "title": "Admissions Over Time",
            "plot": lambda: create_time_series_heatmap(filtered_df)
        }
    ]
    
    # Arrange Q1 plots in a grid layout
    for i in range(0, len(q1_plots), num_cols):
        cols = st.columns(num_cols)
        for j in range(num_cols):
            if i + j < len(q1_plots):
                with cols[j]:
                    st.subheader(q1_plots[i + j]["title"])
                    q1_plots[i + j]["plot"]()

# ---------------------------
# Q2: Potential Biases
# ---------------------------
with tabs[1]:
    st.subheader("Analyzing Potential Biases Across Demographics")
    
    # Define the number of columns per row
    num_cols = 2
    
    # Define all Q2 plots in a list with titles and plot-generating functions
    q2_plots = [
        {
            "title": "Mortality Rate by Race",
            "plot": lambda: create_mortality_by_race(filtered_df)
        },
        {
            "title": "Mortality Rate by Gender",
            "plot": lambda: create_mortality_by_gender(filtered_df)
        },
        {
            "title": "Mortality Rate by Age Group",
            "plot": lambda: create_mortality_by_age_group(filtered_df)
        },
        {
            "title": "Age Distribution by Race and Mortality",
            "plot": lambda: create_violin_age_race_mortality(filtered_df)
        },
        {
            "title": "Heatmap: Race & Gender vs. Mortality",
            "plot": lambda: create_heatmap_race_gender_mortality(filtered_df)
        },
        {
            "title": "Parallel Coordinates Plot of Demographics and Outcomes",
            "plot": lambda: create_parallel_coordinates(filtered_df)
        },
        {
            "title": "Treemap of Race and Mortality",
            "plot": lambda: create_treemap_race_mortality(filtered_df)
        },
        {
            "title": "Sankey Diagram: Race to Mortality Outcomes",
            "plot": lambda: create_sankey_race_mortality(filtered_df)
        }
    ]
    
    # Arrange Q2 plots in a grid layout
    for i in range(0, len(q2_plots), num_cols):
        cols = st.columns(num_cols)
        for j in range(num_cols):
            if i + j < len(q2_plots):
                with cols[j]:
                    st.subheader(q2_plots[i + j]["title"])
                    q2_plots[i + j]["plot"]()

# Footer
st.markdown("""
---
**Data Source:** MIMIC-IV Dataset  
**Project:** Investigating Biases in ICU Patient Data  
**Developed with:** Streamlit, Python  
""")