// https://d3js.org/d3-contour/ v4.0.2 Copyright 2012-2023 Mike Bostock (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-array')) : typeof define === 'function' && define.amd ? define(['exports', 'd3-array'], factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}, global.d3)); })(this, (function (exports, d3Array) { 'use strict'; var array = Array.prototype; var slice = array.slice; function ascending(a, b) { return a - b; } function area(ring) { var i = 0, n = ring.length, area = ring[n - 1][1] * ring[0][0] - ring[n - 1][0] * ring[0][1]; while (++i < n) area += ring[i - 1][1] * ring[i][0] - ring[i - 1][0] * ring[i][1]; return area; } var constant = x => () => x; function contains(ring, hole) { var i = -1, n = hole.length, c; while (++i < n) if (c = ringContains(ring, hole[i])) return c; return 0; } function ringContains(ring, point) { var x = point[0], y = point[1], contains = -1; for (var i = 0, n = ring.length, j = n - 1; i < n; j = i++) { var pi = ring[i], xi = pi[0], yi = pi[1], pj = ring[j], xj = pj[0], yj = pj[1]; if (segmentContains(pi, pj, point)) return 0; if (((yi > y) !== (yj > y)) && ((x < (xj - xi) * (y - yi) / (yj - yi) + xi))) contains = -contains; } return contains; } function segmentContains(a, b, c) { var i; return collinear(a, b, c) && within(a[i = +(a[0] === b[0])], c[i], b[i]); } function collinear(a, b, c) { return (b[0] - a[0]) * (c[1] - a[1]) === (c[0] - a[0]) * (b[1] - a[1]); } function within(p, q, r) { return p <= q && q <= r || r <= q && q <= p; } function noop() {} var cases = [ [], [[[1.0, 1.5], [0.5, 1.0]]], [[[1.5, 1.0], [1.0, 1.5]]], [[[1.5, 1.0], [0.5, 1.0]]], [[[1.0, 0.5], [1.5, 1.0]]], [[[1.0, 1.5], [0.5, 1.0]], [[1.0, 0.5], [1.5, 1.0]]], [[[1.0, 0.5], [1.0, 1.5]]], [[[1.0, 0.5], [0.5, 1.0]]], [[[0.5, 1.0], [1.0, 0.5]]], [[[1.0, 1.5], [1.0, 0.5]]], [[[0.5, 1.0], [1.0, 0.5]], [[1.5, 1.0], [1.0, 1.5]]], [[[1.5, 1.0], [1.0, 0.5]]], [[[0.5, 1.0], [1.5, 1.0]]], [[[1.0, 1.5], [1.5, 1.0]]], [[[0.5, 1.0], [1.0, 1.5]]], [] ]; function Contours() { var dx = 1, dy = 1, threshold = d3Array.thresholdSturges, smooth = smoothLinear; function contours(values) { var tz = threshold(values); // Convert number of thresholds into uniform thresholds. if (!Array.isArray(tz)) { const e = d3Array.extent(values, finite); tz = d3Array.ticks(...d3Array.nice(e[0], e[1], tz), tz); while (tz[tz.length - 1] >= e[1]) tz.pop(); while (tz[1] < e[0]) tz.shift(); } else { tz = tz.slice().sort(ascending); } return tz.map(value => contour(values, value)); } // Accumulate, smooth contour rings, assign holes to exterior rings. // Based on https://github.com/mbostock/shapefile/blob/v0.6.2/shp/polygon.js function contour(values, value) { const v = value == null ? NaN : +value; if (isNaN(v)) throw new Error(`invalid value: ${value}`); var polygons = [], holes = []; isorings(values, v, function(ring) { smooth(ring, values, v); if (area(ring) > 0) polygons.push([ring]); else holes.push(ring); }); holes.forEach(function(hole) { for (var i = 0, n = polygons.length, polygon; i < n; ++i) { if (contains((polygon = polygons[i])[0], hole) !== -1) { polygon.push(hole); return; } } }); return { type: "MultiPolygon", value: value, coordinates: polygons }; } // Marching squares with isolines stitched into rings. // Based on https://github.com/topojson/topojson-client/blob/v3.0.0/src/stitch.js function isorings(values, value, callback) { var fragmentByStart = new Array, fragmentByEnd = new Array, x, y, t0, t1, t2, t3; // Special case for the first row (y = -1, t2 = t3 = 0). x = y = -1; t1 = above(values[0], value); cases[t1 << 1].forEach(stitch); while (++x < dx - 1) { t0 = t1, t1 = above(values[x + 1], value); cases[t0 | t1 << 1].forEach(stitch); } cases[t1 << 0].forEach(stitch); // General case for the intermediate rows. while (++y < dy - 1) { x = -1; t1 = above(values[y * dx + dx], value); t2 = above(values[y * dx], value); cases[t1 << 1 | t2 << 2].forEach(stitch); while (++x < dx - 1) { t0 = t1, t1 = above(values[y * dx + dx + x + 1], value); t3 = t2, t2 = above(values[y * dx + x + 1], value); cases[t0 | t1 << 1 | t2 << 2 | t3 << 3].forEach(stitch); } cases[t1 | t2 << 3].forEach(stitch); } // Special case for the last row (y = dy - 1, t0 = t1 = 0). x = -1; t2 = values[y * dx] >= value; cases[t2 << 2].forEach(stitch); while (++x < dx - 1) { t3 = t2, t2 = above(values[y * dx + x + 1], value); cases[t2 << 2 | t3 << 3].forEach(stitch); } cases[t2 << 3].forEach(stitch); function stitch(line) { var start = [line[0][0] + x, line[0][1] + y], end = [line[1][0] + x, line[1][1] + y], startIndex = index(start), endIndex = index(end), f, g; if (f = fragmentByEnd[startIndex]) { if (g = fragmentByStart[endIndex]) { delete fragmentByEnd[f.end]; delete fragmentByStart[g.start]; if (f === g) { f.ring.push(end); callback(f.ring); } else { fragmentByStart[f.start] = fragmentByEnd[g.end] = {start: f.start, end: g.end, ring: f.ring.concat(g.ring)}; } } else { delete fragmentByEnd[f.end]; f.ring.push(end); fragmentByEnd[f.end = endIndex] = f; } } else if (f = fragmentByStart[endIndex]) { if (g = fragmentByEnd[startIndex]) { delete fragmentByStart[f.start]; delete fragmentByEnd[g.end]; if (f === g) { f.ring.push(end); callback(f.ring); } else { fragmentByStart[g.start] = fragmentByEnd[f.end] = {start: g.start, end: f.end, ring: g.ring.concat(f.ring)}; } } else { delete fragmentByStart[f.start]; f.ring.unshift(start); fragmentByStart[f.start = startIndex] = f; } } else { fragmentByStart[startIndex] = fragmentByEnd[endIndex] = {start: startIndex, end: endIndex, ring: [start, end]}; } } } function index(point) { return point[0] * 2 + point[1] * (dx + 1) * 4; } function smoothLinear(ring, values, value) { ring.forEach(function(point) { var x = point[0], y = point[1], xt = x | 0, yt = y | 0, v1 = valid(values[yt * dx + xt]); if (x > 0 && x < dx && xt === x) { point[0] = smooth1(x, valid(values[yt * dx + xt - 1]), v1, value); } if (y > 0 && y < dy && yt === y) { point[1] = smooth1(y, valid(values[(yt - 1) * dx + xt]), v1, value); } }); } contours.contour = contour; contours.size = function(_) { if (!arguments.length) return [dx, dy]; var _0 = Math.floor(_[0]), _1 = Math.floor(_[1]); if (!(_0 >= 0 && _1 >= 0)) throw new Error("invalid size"); return dx = _0, dy = _1, contours; }; contours.thresholds = function(_) { return arguments.length ? (threshold = typeof _ === "function" ? _ : Array.isArray(_) ? constant(slice.call(_)) : constant(_), contours) : threshold; }; contours.smooth = function(_) { return arguments.length ? (smooth = _ ? smoothLinear : noop, contours) : smooth === smoothLinear; }; return contours; } // When computing the extent, ignore infinite values (as well as invalid ones). function finite(x) { return isFinite(x) ? x : NaN; } // Is the (possibly invalid) x greater than or equal to the (known valid) value? // Treat any invalid value as below negative infinity. function above(x, value) { return x == null ? false : +x >= value; } // During smoothing, treat any invalid value as negative infinity. function valid(v) { return v == null || isNaN(v = +v) ? -Infinity : v; } function smooth1(x, v0, v1, value) { const a = value - v0; const b = v1 - v0; const d = isFinite(a) || isFinite(b) ? a / b : Math.sign(a) / Math.sign(b); return isNaN(d) ? x : x + d - 0.5; } function defaultX(d) { return d[0]; } function defaultY(d) { return d[1]; } function defaultWeight() { return 1; } function density() { var x = defaultX, y = defaultY, weight = defaultWeight, dx = 960, dy = 500, r = 20, // blur radius k = 2, // log2(grid cell size) o = r * 3, // grid offset, to pad for blur n = (dx + o * 2) >> k, // grid width m = (dy + o * 2) >> k, // grid height threshold = constant(20); function grid(data) { var values = new Float32Array(n * m), pow2k = Math.pow(2, -k), i = -1; for (const d of data) { var xi = (x(d, ++i, data) + o) * pow2k, yi = (y(d, i, data) + o) * pow2k, wi = +weight(d, i, data); if (wi && xi >= 0 && xi < n && yi >= 0 && yi < m) { var x0 = Math.floor(xi), y0 = Math.floor(yi), xt = xi - x0 - 0.5, yt = yi - y0 - 0.5; values[x0 + y0 * n] += (1 - xt) * (1 - yt) * wi; values[x0 + 1 + y0 * n] += xt * (1 - yt) * wi; values[x0 + 1 + (y0 + 1) * n] += xt * yt * wi; values[x0 + (y0 + 1) * n] += (1 - xt) * yt * wi; } } d3Array.blur2({data: values, width: n, height: m}, r * pow2k); return values; } function density(data) { var values = grid(data), tz = threshold(values), pow4k = Math.pow(2, 2 * k); // Convert number of thresholds into uniform thresholds. if (!Array.isArray(tz)) { tz = d3Array.ticks(Number.MIN_VALUE, d3Array.max(values) / pow4k, tz); } return Contours() .size([n, m]) .thresholds(tz.map(d => d * pow4k)) (values) .map((c, i) => (c.value = +tz[i], transform(c))); } density.contours = function(data) { var values = grid(data), contours = Contours().size([n, m]), pow4k = Math.pow(2, 2 * k), contour = value => { value = +value; var c = transform(contours.contour(values, value * pow4k)); c.value = value; // preserve exact threshold value return c; }; Object.defineProperty(contour, "max", {get: () => d3Array.max(values) / pow4k}); return contour; }; function transform(geometry) { geometry.coordinates.forEach(transformPolygon); return geometry; } function transformPolygon(coordinates) { coordinates.forEach(transformRing); } function transformRing(coordinates) { coordinates.forEach(transformPoint); } // TODO Optimize. function transformPoint(coordinates) { coordinates[0] = coordinates[0] * Math.pow(2, k) - o; coordinates[1] = coordinates[1] * Math.pow(2, k) - o; } function resize() { o = r * 3; n = (dx + o * 2) >> k; m = (dy + o * 2) >> k; return density; } density.x = function(_) { return arguments.length ? (x = typeof _ === "function" ? _ : constant(+_), density) : x; }; density.y = function(_) { return arguments.length ? (y = typeof _ === "function" ? _ : constant(+_), density) : y; }; density.weight = function(_) { return arguments.length ? (weight = typeof _ === "function" ? _ : constant(+_), density) : weight; }; density.size = function(_) { if (!arguments.length) return [dx, dy]; var _0 = +_[0], _1 = +_[1]; if (!(_0 >= 0 && _1 >= 0)) throw new Error("invalid size"); return dx = _0, dy = _1, resize(); }; density.cellSize = function(_) { if (!arguments.length) return 1 << k; if (!((_ = +_) >= 1)) throw new Error("invalid cell size"); return k = Math.floor(Math.log(_) / Math.LN2), resize(); }; density.thresholds = function(_) { return arguments.length ? (threshold = typeof _ === "function" ? _ : Array.isArray(_) ? constant(slice.call(_)) : constant(_), density) : threshold; }; density.bandwidth = function(_) { if (!arguments.length) return Math.sqrt(r * (r + 1)); if (!((_ = +_) >= 0)) throw new Error("invalid bandwidth"); return r = (Math.sqrt(4 * _ * _ + 1) - 1) / 2, resize(); }; return density; } exports.contourDensity = density; exports.contours = Contours; }));