# Import necessary libraries import os import tempfile import gradio as gr from dotenv import load_dotenv import torch from scipy.io.wavfile import write from diffusers import DiffusionPipeline import google.generativeai as genai from pathlib import Path # Load environment variables from .env file load_dotenv() #Google Generative AI for Gemini genai.configure(api_key=os.getenv("API_KEY")) # Hugging Face token from environment variables hf_token = os.getenv("HF_TKN") def analyze_image_with_gemini(image_file): """ Analyzes an uploaded image with Gemini and generates a descriptive caption. """ try: # Save uploaded image to a temporary file temp_image_path = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg").name with open(temp_image_path, "wb") as temp_file: temp_file.write(image_file) # Prepare the image data and prompt for Gemini image_parts = [{"mime_type": "image/jpeg", "data": Path(temp_image_path).read_bytes()}] prompt_parts = ["Describe precisely the image in one sentence.\n", image_parts[0], "\n"] generation_config = {"temperature": 0.05, "top_p": 1, "top_k": 26, "max_output_tokens": 4096} safety_settings = [{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}] model = genai.GenerativeModel(model_name="gemini-1.0-pro-vision-latest", generation_config=generation_config, safety_settings=safety_settings) response = model.generate_content(prompt_parts) return response.text.strip(), False # False indicates no error except Exception as e: print(f"Error analyzing image with Gemini: {e}") return "Error analyzing image with Gemini", True # Indicates error with a message def get_audioldm_from_caption(caption): """ Generates sound from a caption using the AudioLDM-2 model. """ # Initialize the model pipe = DiffusionPipeline.from_pretrained("cvssp/audioldm2", use_auth_token=hf_token) pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu") # Generate audio from the caption audio_output = pipe(prompt=caption, num_inference_steps=50, guidance_scale=7.5) audio = audio_output.audios[0] temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") write(temp_file.name, 16000, audio) return temp_file.name # css css=""" #col-container{ margin: 0 auto; max-width: 800px; } """ # Gradio interface setup with gr.Blocks(css=css) as demo: # Main Title and App Description with gr.Column(elem_id="col-container"): gr.HTML("""
âš¡ Powered by Bilsimaging
""") gr.Markdown(""" Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a descriptive caption and a corresponding sound effect. Whether you're exploring the sound of nature, urban environments, or anything in between, this app brings your images to auditory life. **💡 How it works:** 1. **Upload an image**: Choose an image that you'd like to analyze. 2. **Generate Description**: Click on 'Tap to Generate Description from the image' to get a textual description of your uploaded image. 3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a sound effect that matches the image context. Enjoy the journey from visual to auditory sensation with just a few clicks! For Example Demos sound effects generated , check out our [YouTube channel](https://www.youtube.com/playlist?list=PLwEbW4bdYBSC8exiJ9PfzufGND_14f--C) """) # Interface Components image_upload = gr.File(label="Upload Image", type="binary") generate_description_button = gr.Button("Tap to Generate a Description from your image") caption_display = gr.Textbox(label="Image Description", interactive=False) # Keep as read-only generate_sound_button = gr.Button("Generate Sound Effect") audio_output = gr.Audio(label="Generated Sound Effect") # extra footer gr.Markdown("""## 👥 How You Can Contribute We welcome contributions and suggestions for improvements. Your feedback is invaluable to the continuous enhancement of this application. For support, questions, or to contribute, please contact us at [contact@bilsimaging.com](mailto:contact@bilsimaging.com). Support our work and get involved by donating through [Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua """) gr.Markdown("""## 📢 Stay Connected this app is a testament to the creative possibilities that emerge when technology meets art. Enjoy exploring the auditory landscape of your images! """) # Function to update the caption display based on the uploaded image def update_caption(image_file): description, _ = analyze_image_with_gemini(image_file) return description # Function to generate sound from the description def generate_sound(description): audio_path = get_audioldm_from_caption(description) return audio_path generate_description_button.click( fn=update_caption, inputs=image_upload, outputs=caption_display ) generate_sound_button.click( fn=generate_sound, inputs=caption_display, outputs=audio_output ) # Launch the Gradio app demo.launch(debug=True, share=True)