import argparse import re import os import streamlit as st import random import numpy as np import torch from transformers import AutoTokenizer, AutoModelForCausalLM import tokenizers #os.environ["TOKENIZERS_PARALLELISM"] = "false" random.seed(None) first = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.\n\ninformal english:""" suggested_text_list = [first] @st.cache(hash_funcs={tokenizers.Tokenizer: id, tokenizers.AddedToken: id}) def load_model(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return model, tokenizer def extend(input_text, num_return_sequences, max_size=20, top_k=50, top_p=0.95): if len(input_text) == 0: input_text = "" encoded_prompt = tokenizer.encode( input_text, add_special_tokens=False, return_tensors="pt") encoded_prompt = encoded_prompt.to(device) if encoded_prompt.size()[-1] == 0: input_ids = None else: input_ids = encoded_prompt output_sequences = model.generate( input_ids=input_ids, max_length=max_size + len(encoded_prompt[0]), top_k=top_k, top_p=top_p, do_sample=True, num_return_sequences=num_return_sequences) # Remove the batch dimension when returning multiple sequences if len(output_sequences.shape) > 2: output_sequences.squeeze_() generated_sequences = [] print(output_sequences) for generated_sequence_idx, generated_sequence in enumerate(output_sequences): generated_sequence = generated_sequence.tolist() text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) print(text) total_sequence = ( text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :] ) generated_sequences.append(total_sequence) st.write(total_sequence) parsed_text = total_sequence.replace("<|startoftext|>", "").replace("\r","").replace("\n\n", "\n") if len(parsed_text) == 0: parsed_text = "שגיאה" return parsed_text if __name__ == "__main__": st.title("GPT2 Demo:") pre_model_path = "BigSalmon/InformalToFormalLincoln15" model, tokenizer = load_model(pre_model_path) stop_token = "<|endoftext|>" new_lines = "\n\n\n" np.random.seed(None) random_seed = np.random.randint(10000,size=1) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count() torch.manual_seed(random_seed) if n_gpu > 0: torch.cuda.manual_seed_all(random_seed) model.to(device) text_area = st.text_area("Enter the first few words (or leave blank), tap on \"Generate Text\" below. Tapping again will produce a different result.", first) st.sidebar.subheader("Configurable parameters") max_len = st.sidebar.slider("Max-Length", 0, 256, 5,help="The maximum length of the sequence to be generated.") num_return_sequences = st.sidebar.slider("Outputs", 1, 50, 5,help="The number of outputs to be returned.") top_k = st.sidebar.slider("Top-K", 0, 100, 40, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.") top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.92, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.") if st.button("Generate Text"): with st.spinner(text="Generating results..."): st.subheader("Result") print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}") if len(text_area.strip()) == 0: text_area = random.choice(suggested_text_list) result = extend(input_text=text_area, num_return_sequences=int(num_return_sequences), max_size=int(max_len), top_k=int(top_k), top_p=float(top_p)) print("Done length: " + str(len(result)) + " bytes") #