Spaces:
Running
Running
import PyPDF2 # For PDF text extraction | |
import streamlit as st # For building the Streamlit app | |
from docx import Document # For Word document text extraction | |
from langchain.chains import RunnableLambda, RunnablePassthrough | |
from langchain.chat_models import ChatGoogleGenerativeAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.prompts import (ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessage) | |
from langchain.schema import StrOutputParser # For parsing the output | |
# Function to extract text from PDF | |
def extract_text_from_pdf(uploaded_file): | |
text = "" | |
reader = PyPDF2.PdfReader(uploaded_file) | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
# Function to extract text from Word document | |
def extract_text_from_word(uploaded_file): | |
text = "" | |
doc = Document(uploaded_file) | |
for paragraph in doc.paragraphs: | |
text += paragraph.text + "\n" | |
return text | |
# Initialize Google Generative AI chat model | |
def initialize_chat_model(): | |
with open("key.txt", "r") as f: | |
GOOGLE_API_KEY = f.read().strip() | |
chat_model = ChatGoogleGenerativeAI( | |
google_api_key=GOOGLE_API_KEY, | |
model="gemini-1.5-pro-latest", | |
temperature=0.4, | |
max_tokens=2000, | |
timeout=120, | |
max_retries=5, | |
top_p=0.9, | |
top_k=40, | |
presence_penalty=0.6, | |
frequency_penalty=0.3 | |
) | |
return chat_model | |
chat_model = initialize_chat_model() | |
# Create Chat Template | |
chat_prompt_template = ChatPromptTemplate.from_messages( | |
[ | |
SystemMessage( | |
content=""" You are a language model designed to follow user instructions exactly as given. | |
Do not take any actions or provide any information unless specifically directed by the user. | |
Your role is to fulfill the user's requests precisely without deviating from the instructions provided.""" | |
), | |
MessagesPlaceholder(variable_name="chat_history"), | |
HumanMessagePromptTemplate.from_template("{human_input}") | |
] | |
) | |
# Initialize the Memory | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
# Create an Output Parser | |
output_parser = StrOutputParser() | |
# Define a chain | |
chain = RunnablePassthrough.assign( | |
chat_history=RunnableLambda(lambda human_input: memory.load_memory_variables(human_input)['chat_history']) | |
) | chat_prompt_template | chat_model | output_parser | |
# Streamlit App | |
st.title("Interview Preparation with AI") | |
st.markdown("## Part-1: Upload Files, Summarize, and Extract Keywords") | |
# File upload section | |
file1 = st.file_uploader("Upload your resume (PDF or DOCX):", type=["pdf", "docx"]) | |
file2 = st.file_uploader("Upload the job description (PDF or DOCX):", type=["pdf", "docx"]) | |
if file1 and file2: | |
try: | |
# Detect file type and extract text for file 1 | |
if file1.name.endswith('.pdf'): | |
text1 = extract_text_from_pdf(file1) | |
elif file1.name.endswith('.docx'): | |
text1 = extract_text_from_word(file1) | |
else: | |
st.error("Unsupported file type for file 1") | |
# Detect file type and extract text for file 2 | |
if file2.name.endswith('.pdf'): | |
text2 = extract_text_from_pdf(file2) | |
elif file2.name.endswith('.docx'): | |
text2 = extract_text_from_word(file2) | |
else: | |
st.error("Unsupported file type for file 2") | |
# Ensure session state variables are initialized | |
if "ats_score_calculated" not in st.session_state: | |
st.session_state.ats_score_calculated = False | |
# Button to Calculate ATS Score | |
if st.button("ATS Score") or st.session_state.ats_score_calculated: | |
st.session_state.ats_score_calculated = True | |
resume_keywords = set(keywords1) | |
job_description_keywords = set(keywords2) | |
st.markdown("### ATS Score Calculation") | |
query = {"human_input": f""" | |
You are an advanced Applicant Tracking System (ATS) designed to evaluate resumes against job descriptions with exceptional accuracy. Analyze the following keywords extracted from a job description and a resume, compare them, and calculate the match percentage. | |
Job Description Keywords: | |
{list(job_description_keywords)} | |
Resume Keywords: | |
{list(resume_keywords)} | |
Provide the ATS score as a percentage match between the resume and the job description in the following format: | |
The ATS Score of your Resume According to the Job Description is \"XX%\". | |
"""} | |
response = chain.invoke(query) | |
memory.save_context(query, {"output": response}) | |
st.write(response) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
else: | |
st.info("Please upload both files to proceed.") |