import streamlit as st from langchain_chroma import Chroma from langchain_core.prompts import ChatPromptTemplate from langchain_google_genai import GoogleGenerativeAI from langchain_huggingface import HuggingFaceEmbeddings from langchain_groq import ChatGroq # Configuration # GOOGLE_API_KEY = "AIzaSyDCBj-no7FOSkiZ87UaxGT1_Z_QDsCdwtI" # Replace with your API key GROQ_API_KEY = "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" CHROMA_DB_DIR = "./chroma_db_" # Directory for ChromaDB MODEL_NAME = "flax-sentence-embeddings/all_datasets_v4_MiniLM-L6" # Initialize HuggingFace Embeddings embeddings_model = HuggingFaceEmbeddings(model_name=MODEL_NAME) # Initialize Chroma Database db = Chroma(collection_name="vector_database", embedding_function=embeddings_model, persist_directory=CHROMA_DB_DIR) # Initialize Google Generative AI # genai_model = GoogleGenerativeAI(api_key=GOOGLE_API_KEY, model="gemini-1.5-flash") chat_model = ChatGroq(api_key=GROQ_API_KEY, model_name="llama3-8b-8192") # Streamlit App st.title("Customer Decision Hub Assistant") st.write("Ask a question based on the CDH Documentation.") # Input Query query = st.text_input("Enter your question:") if query: with st.spinner("Retrieving context and generating an answer..."): # Retrieve Context from ChromaDB docs_chroma = db.similarity_search_with_score(query, k=4) context_text = "\n\n".join([doc.page_content for doc, _score in docs_chroma]) # Generate Answer PROMPT_TEMPLATE = """ Answer the question based only on the following context: {context} Answer the question based on the above context: {question}. Provide a detailed answer. Don’t justify your answers. Don’t give information not mentioned in the CONTEXT INFORMATION. Do not say "according to the context" or "mentioned in the context" or similar. """ prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) prompt = prompt_template.format(context=context_text, question=query) response_text = chat_model.invoke(prompt).content # Display Answer st.subheader("Answer:") st.write(response_text)