Spaces:
Runtime error
Runtime error
Benjamin Bossan
commited on
Commit
·
76ffd6d
1
Parent(s):
ceead2c
Initial commit
Browse files- app.py +391 -0
- make-data.py +26 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# HF space creator starting from an sklearn model
|
2 |
+
|
3 |
+
import base64
|
4 |
+
import glob
|
5 |
+
import io
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import pickle
|
9 |
+
import re
|
10 |
+
import shutil
|
11 |
+
from pathlib import Path
|
12 |
+
from tempfile import mkdtemp
|
13 |
+
|
14 |
+
import pandas as pd
|
15 |
+
import sklearn
|
16 |
+
import streamlit as st
|
17 |
+
from sklearn.base import BaseEstimator
|
18 |
+
|
19 |
+
import skops.io as sio
|
20 |
+
from skops import card, hub_utils
|
21 |
+
|
22 |
+
st.set_page_config(layout="wide")
|
23 |
+
st.title("Skops space creator for sklearn")
|
24 |
+
|
25 |
+
|
26 |
+
PLACEHOLDER = "[More Information Needed]"
|
27 |
+
PLOT_PREFIX = "__plot__:"
|
28 |
+
custom_sections: dict[str, str] = {}
|
29 |
+
tmp_repo = Path(mkdtemp(prefix="skops-"))
|
30 |
+
left_col, right_col = st.columns([1, 2])
|
31 |
+
|
32 |
+
# a hacky way to "persist" custom sections
|
33 |
+
CUSTOM_SECTIONS_CACHE_FILE = ".custom-sections.json"
|
34 |
+
|
35 |
+
|
36 |
+
def _clear_custom_section_cache():
|
37 |
+
with open(CUSTOM_SECTIONS_CACHE_FILE, "w") as f:
|
38 |
+
f.write("")
|
39 |
+
|
40 |
+
|
41 |
+
def _load_custom_section_cache():
|
42 |
+
global custom_sections
|
43 |
+
|
44 |
+
# in case file doesn't exist yet, create it
|
45 |
+
if not os.path.exists(CUSTOM_SECTIONS_CACHE_FILE):
|
46 |
+
Path(CUSTOM_SECTIONS_CACHE_FILE).touch()
|
47 |
+
|
48 |
+
with open(CUSTOM_SECTIONS_CACHE_FILE, "r") as f:
|
49 |
+
try:
|
50 |
+
custom_sections = json.load(f)
|
51 |
+
except ValueError:
|
52 |
+
pass
|
53 |
+
|
54 |
+
|
55 |
+
def _write_custom_section_cache():
|
56 |
+
with open(CUSTOM_SECTIONS_CACHE_FILE, "w") as f:
|
57 |
+
json.dump(custom_sections, f)
|
58 |
+
|
59 |
+
|
60 |
+
def _remove_custom_section(key):
|
61 |
+
del custom_sections[key]
|
62 |
+
_write_custom_section_cache()
|
63 |
+
|
64 |
+
|
65 |
+
def _clear_repo(path):
|
66 |
+
for file_path in glob.glob(str(Path(path) / "*")):
|
67 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
68 |
+
os.unlink(file_path)
|
69 |
+
elif os.path.isdir(file_path):
|
70 |
+
shutil.rmtree(file_path)
|
71 |
+
|
72 |
+
|
73 |
+
def _write_plot(plot_name, plot_file):
|
74 |
+
with open(plot_name, "wb") as f:
|
75 |
+
f.write(plot_file)
|
76 |
+
|
77 |
+
|
78 |
+
def init_repo():
|
79 |
+
_clear_repo(tmp_repo)
|
80 |
+
|
81 |
+
try:
|
82 |
+
file_name = Path(mkdtemp(prefix="skops-")) / "model.skops"
|
83 |
+
sio.dump(model, file_name)
|
84 |
+
hub_utils.init(
|
85 |
+
model=file_name,
|
86 |
+
dst=tmp_repo,
|
87 |
+
task=task,
|
88 |
+
data=data,
|
89 |
+
requirements=requirements,
|
90 |
+
)
|
91 |
+
except Exception as exc:
|
92 |
+
print("Uh oh, something went wrong when initializing the repo:", exc)
|
93 |
+
|
94 |
+
|
95 |
+
def load_model():
|
96 |
+
if model_file is None:
|
97 |
+
return
|
98 |
+
|
99 |
+
bytes_data = model_file.getvalue()
|
100 |
+
model = pickle.loads(bytes_data)
|
101 |
+
assert isinstance(model, BaseEstimator), "model must be an sklearn model"
|
102 |
+
return model
|
103 |
+
|
104 |
+
|
105 |
+
def load_data():
|
106 |
+
if data_file is None:
|
107 |
+
return
|
108 |
+
|
109 |
+
bytes_data = io.BytesIO(data_file.getvalue())
|
110 |
+
df = pd.read_csv(bytes_data)
|
111 |
+
return df
|
112 |
+
|
113 |
+
|
114 |
+
def _parse_metrics(metrics):
|
115 |
+
metrics_table = {}
|
116 |
+
for line in metrics.splitlines():
|
117 |
+
line = line.strip()
|
118 |
+
name, _, val = line.partition("=")
|
119 |
+
try:
|
120 |
+
# try to coerce to float but don't error if it fails
|
121 |
+
val = float(val.strip())
|
122 |
+
except ValueError:
|
123 |
+
pass
|
124 |
+
metrics_table[name.strip()] = val
|
125 |
+
return metrics_table
|
126 |
+
|
127 |
+
|
128 |
+
def _create_model_card():
|
129 |
+
if model is None or data is None:
|
130 |
+
st.text("*some data is missing to render the model card*")
|
131 |
+
return
|
132 |
+
|
133 |
+
init_repo()
|
134 |
+
metadata = card.metadata_from_config(tmp_repo)
|
135 |
+
model_card = card.Card(model=model, metadata=metadata)
|
136 |
+
|
137 |
+
if model_description:
|
138 |
+
model_card.add(**{"Model description": model_description})
|
139 |
+
|
140 |
+
if intended_uses:
|
141 |
+
model_card.add(
|
142 |
+
**{"Model description/Intended uses & limitations": intended_uses}
|
143 |
+
)
|
144 |
+
|
145 |
+
if metrics:
|
146 |
+
metrics_table = _parse_metrics(metrics)
|
147 |
+
model_card.add_metrics(**metrics_table)
|
148 |
+
|
149 |
+
if authors:
|
150 |
+
model_card.add(**{"Model Card Authors": authors})
|
151 |
+
|
152 |
+
if contact:
|
153 |
+
model_card.add(**{"Model Card Contact": contact})
|
154 |
+
|
155 |
+
if citation:
|
156 |
+
model_card.add(**{"Citation": citation})
|
157 |
+
|
158 |
+
if custom_sections:
|
159 |
+
for key, val in custom_sections.items():
|
160 |
+
if not key:
|
161 |
+
continue
|
162 |
+
|
163 |
+
if key.startswith(PLOT_PREFIX):
|
164 |
+
key = key[len(PLOT_PREFIX):]
|
165 |
+
model_card.add_plot(**{key: val})
|
166 |
+
else:
|
167 |
+
model_card.add(**{key: val})
|
168 |
+
|
169 |
+
return model_card
|
170 |
+
|
171 |
+
|
172 |
+
def _process_card_for_rendering(rendered: str) -> tuple[str, str]:
|
173 |
+
idx = rendered[1:].index("\n---") + 1
|
174 |
+
metadata = rendered[3:idx]
|
175 |
+
rendered = rendered[idx + 4 :] # noqa: E203
|
176 |
+
|
177 |
+
# below is a hack to display the images in streamlit
|
178 |
+
# https://discuss.streamlit.io/t/image-in-markdown/13274/10 The problem is
|
179 |
+
|
180 |
+
# that streamlit does not display images in markdown, so we need to replace
|
181 |
+
# them with html. However, we only want that in the rendered markdown, not
|
182 |
+
# in the card that is produced for the hub
|
183 |
+
def markdown_images(markdown):
|
184 |
+
# example image markdown:
|
185 |
+
# ![Test image](images/test.png "Alternate text")
|
186 |
+
images = re.findall(
|
187 |
+
r'(!\[(?P<image_title>[^\]]+)\]\((?P<image_path>[^\)"\s]+)\s*([^\)]*)\))',
|
188 |
+
markdown
|
189 |
+
)
|
190 |
+
return images
|
191 |
+
|
192 |
+
def img_to_bytes(img_path):
|
193 |
+
img_bytes = Path(img_path).read_bytes()
|
194 |
+
encoded = base64.b64encode(img_bytes).decode()
|
195 |
+
return encoded
|
196 |
+
|
197 |
+
def img_to_html(img_path, img_alt):
|
198 |
+
img_format = img_path.split(".")[-1]
|
199 |
+
img_html = (
|
200 |
+
f'<img src="data:image/{img_format.lower()};'
|
201 |
+
f'base64,{img_to_bytes(img_path)}" '
|
202 |
+
f'alt="{img_alt}" '
|
203 |
+
'style="max-width: 100%;">'
|
204 |
+
)
|
205 |
+
return img_html
|
206 |
+
|
207 |
+
def markdown_insert_images(markdown):
|
208 |
+
images = markdown_images(markdown)
|
209 |
+
|
210 |
+
for image in images:
|
211 |
+
image_markdown = image[0]
|
212 |
+
image_alt = image[1]
|
213 |
+
image_path = image[2]
|
214 |
+
markdown = markdown.replace(image_markdown, img_to_html(image_path, image_alt))
|
215 |
+
return markdown
|
216 |
+
|
217 |
+
rendered_with_img = markdown_insert_images(rendered)
|
218 |
+
return metadata, rendered_with_img
|
219 |
+
|
220 |
+
|
221 |
+
def display_model_card():
|
222 |
+
model_card = _create_model_card()
|
223 |
+
if not model_card:
|
224 |
+
return
|
225 |
+
|
226 |
+
rendered = model_card.render()
|
227 |
+
metadata, rendered = _process_card_for_rendering(rendered)
|
228 |
+
# idx = rendered[1:].index("\n---") + 1
|
229 |
+
# metadata = rendered[3:idx]
|
230 |
+
# rendered = rendered[idx + 4 :] # noqa: E203
|
231 |
+
|
232 |
+
with right_col:
|
233 |
+
# strip metadata
|
234 |
+
with st.expander("show metadata"):
|
235 |
+
st.text(metadata)
|
236 |
+
st.markdown(rendered, unsafe_allow_html=True)
|
237 |
+
|
238 |
+
|
239 |
+
def download_model_card():
|
240 |
+
model_card = _create_model_card()
|
241 |
+
if model_card is not None:
|
242 |
+
return model_card.render()
|
243 |
+
return ""
|
244 |
+
|
245 |
+
|
246 |
+
def add_custom_section():
|
247 |
+
# this is required to "refresh" these variables...
|
248 |
+
global section_name, section_content
|
249 |
+
section_name = st.session_state.key_section_name
|
250 |
+
section_content = st.session_state.key_section_content
|
251 |
+
|
252 |
+
if not section_name or not section_content:
|
253 |
+
return
|
254 |
+
|
255 |
+
custom_sections[section_name] = section_content
|
256 |
+
_write_custom_section_cache()
|
257 |
+
|
258 |
+
|
259 |
+
def add_custom_plot():
|
260 |
+
# this is required to "refresh" these variables...
|
261 |
+
global section_name, section_content
|
262 |
+
plot_name = st.session_state.key_plot_name
|
263 |
+
plot_file = st.session_state.key_plot_file
|
264 |
+
|
265 |
+
if not plot_name or not plot_file:
|
266 |
+
return
|
267 |
+
|
268 |
+
# store plot in temp repo
|
269 |
+
file_name = plot_file.name.replace(" ", "_")
|
270 |
+
file_path = str(tmp_repo / file_name)
|
271 |
+
with open(file_path, "wb") as f:
|
272 |
+
f.write(plot_file.getvalue())
|
273 |
+
|
274 |
+
custom_sections[str(PLOT_PREFIX + plot_name)] = file_path
|
275 |
+
_write_custom_section_cache()
|
276 |
+
|
277 |
+
|
278 |
+
with left_col:
|
279 |
+
# This contains every element required to edit the model card
|
280 |
+
model = None
|
281 |
+
data = None
|
282 |
+
section_name = None
|
283 |
+
section_content = None
|
284 |
+
|
285 |
+
model_file = st.file_uploader("Upload a model*", on_change=load_model)
|
286 |
+
data_file = st.file_uploader(
|
287 |
+
"Upload X data (csv)*", type=["csv"], on_change=load_data
|
288 |
+
)
|
289 |
+
|
290 |
+
task = st.selectbox(
|
291 |
+
label="Choose the task type*",
|
292 |
+
options=[
|
293 |
+
"tabular-classification",
|
294 |
+
"tabular-regression",
|
295 |
+
"text-classification",
|
296 |
+
"text-regression",
|
297 |
+
],
|
298 |
+
on_change=init_repo,
|
299 |
+
)
|
300 |
+
|
301 |
+
requirements = st.text_input(
|
302 |
+
label="Requirements*",
|
303 |
+
value=[f"scikit-learn=={sklearn.__version__}\n"],
|
304 |
+
on_change=init_repo,
|
305 |
+
)
|
306 |
+
|
307 |
+
if model_file is not None:
|
308 |
+
model = load_model()
|
309 |
+
|
310 |
+
if data_file is not None:
|
311 |
+
data = load_data()
|
312 |
+
|
313 |
+
if model is not None and data is not None:
|
314 |
+
init_repo()
|
315 |
+
|
316 |
+
model_description = st.text_input("Model description", value=PLACEHOLDER)
|
317 |
+
intended_uses = st.text_area(
|
318 |
+
"Intended uses & limitations", height=2, value=PLACEHOLDER
|
319 |
+
)
|
320 |
+
metrics = st.text_area("Metrics (e.g. 'accuracy = 0.95'), one metric per line")
|
321 |
+
authors = st.text_area(
|
322 |
+
"Authors",
|
323 |
+
value="This model card is written by following authors:\n\n" + PLACEHOLDER,
|
324 |
+
)
|
325 |
+
contact = st.text_area(
|
326 |
+
"Contact",
|
327 |
+
value="You can contact the model card authors through following channels:\n\n"
|
328 |
+
+ PLACEHOLDER,
|
329 |
+
)
|
330 |
+
citation = st.text_area(
|
331 |
+
"Citation",
|
332 |
+
value="Below you can find information related to citation.\n\nBibTex:\n\n```\n"
|
333 |
+
+ PLACEHOLDER
|
334 |
+
+ "\n```",
|
335 |
+
height=5,
|
336 |
+
)
|
337 |
+
|
338 |
+
with st.form("custom-section", clear_on_submit=True):
|
339 |
+
section_name = st.text_input(
|
340 |
+
"Section name (use '/' for subsections, e.g. 'Model description/My new"
|
341 |
+
" section')",
|
342 |
+
key="key_section_name",
|
343 |
+
)
|
344 |
+
section_content = st.text_area(
|
345 |
+
"Content of the new section", key="key_section_content"
|
346 |
+
)
|
347 |
+
submit_new_section = st.form_submit_button(
|
348 |
+
"Create new section", on_click=add_custom_section
|
349 |
+
)
|
350 |
+
|
351 |
+
with st.form("custom-plots", clear_on_submit=True):
|
352 |
+
plot_name = st.text_input(
|
353 |
+
"Section name (use '/' for subsections, e.g. 'Model description/My new"
|
354 |
+
" plot')",
|
355 |
+
key="key_plot_name",
|
356 |
+
)
|
357 |
+
plot_file = st.file_uploader(
|
358 |
+
"Upload a figure*", key="key_plot_file"
|
359 |
+
)
|
360 |
+
|
361 |
+
submit_new_plot = st.form_submit_button(
|
362 |
+
"Add plot", on_click=add_custom_plot
|
363 |
+
)
|
364 |
+
|
365 |
+
_load_custom_section_cache()
|
366 |
+
for key in custom_sections:
|
367 |
+
if not key:
|
368 |
+
continue
|
369 |
+
|
370 |
+
if key.startswith(PLOT_PREFIX):
|
371 |
+
st.button(
|
372 |
+
f"Remove plot '{key[len(PLOT_PREFIX):]}'", on_click=_remove_custom_section, args=(key,)
|
373 |
+
)
|
374 |
+
else:
|
375 |
+
st.button(
|
376 |
+
f"Remove section '{key}'", on_click=_remove_custom_section, args=(key,)
|
377 |
+
)
|
378 |
+
|
379 |
+
if custom_sections:
|
380 |
+
st.button(
|
381 |
+
f"Remove all ({len(custom_sections)}) custom elements",
|
382 |
+
on_click=_clear_custom_section_cache,
|
383 |
+
)
|
384 |
+
|
385 |
+
|
386 |
+
with right_col:
|
387 |
+
# this contains the rendered model card
|
388 |
+
st.button(label="Render model card", on_click=display_model_card)
|
389 |
+
rendered = download_model_card()
|
390 |
+
if rendered:
|
391 |
+
st.download_button(label="Download model card (markdown format)", data=rendered)
|
make-data.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# companion script to st-space-creator.py
|
2 |
+
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
from sklearn.datasets import make_classification
|
7 |
+
from sklearn.linear_model import LogisticRegression
|
8 |
+
from sklearn.pipeline import Pipeline
|
9 |
+
from sklearn.preprocessing import StandardScaler
|
10 |
+
|
11 |
+
X, y = make_classification()
|
12 |
+
df = pd.DataFrame(X)
|
13 |
+
|
14 |
+
clf = Pipeline(
|
15 |
+
[
|
16 |
+
("scale", StandardScaler()),
|
17 |
+
("clf", LogisticRegression(random_state=0)),
|
18 |
+
]
|
19 |
+
)
|
20 |
+
clf.fit(X, y)
|
21 |
+
|
22 |
+
with open("logreg.pkl", "wb") as f:
|
23 |
+
pickle.dump(clf, f)
|
24 |
+
|
25 |
+
|
26 |
+
df.to_csv("data.csv", index=False)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
scikit-learn
|
3 |
+
skops
|