File size: 5,740 Bytes
de37907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6990294
de37907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8dca23
 
 
de37907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from rank_bm25 import BM25Okapi
from tokenizing import tokenize_text, tokenize_doc, tokenize_doc_to_str
import numpy as np
from tqdm import tqdm
import os
import pickle
import torch

from sentence_transformers import SentenceTransformer

# Define the base path
base_path = "./Data" # "/mnt/d/Semester7/NLP/RAG/Data"

class Retriever:

    def __init__(self, docs: [dict]) -> None:
        self.docs = docs
        self.tokenized_docs_path = os.path.join(base_path, "tokenized_docs.pkl")
        self.bm25_path = os.path.join(base_path, "bm25.pkl")
        self.sbert_embeddings_path = os.path.join(base_path, "embeddings_parts")

        # Initialize SBERT
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.sbert = SentenceTransformer('sentence-transformers/all-distilroberta-v1', device=device)

        # Load or tokenize documents
        if os.path.exists(self.tokenized_docs_path) and os.path.exists(self.bm25_path) and os.path.exists(self.sbert_embeddings_path):
            print("Loading cache")
            self.load_cache()
            print("Cache loaded")
        else:
            self.tokenize_and_initialize()

    def tokenize_and_initialize(self):
        # Tokenize the documents with a progress bar
        self.tokenized_docs = [tokenize_doc(doc) for doc in tqdm(self.docs, desc="Tokenizing documents")]
        self.str_docs = [tokenize_doc_to_str(doc) for doc in self.docs]

        # Ensure that the tokenized_docs list is not empty
        if not self.tokenized_docs:
            raise ValueError("The list of tokenized documents is empty. Please check the input documents and the tokenization process.")

        # Initialize BM25 with the tokenized texts
        self.bm25 = BM25Okapi(self.tokenized_docs)

        # Get embeddings for all the tocenized documents
        self.sbert_embeddings = self.sbert.encode(self.str_docs, show_progress_bar=True)
        self.sbert_embeddings = self.sbert_embeddings.cpu()

        # Save the tokenized documents and BM25 model
        self.save_cache()

    def save_cache(self):
        with open(self.tokenized_docs_path, 'wb') as f:
            pickle.dump(self.tokenized_docs, f)
        with open(self.bm25_path, 'wb') as f:
            pickle.dump(self.bm25, f)
        split_size = 1000  # Number of rows per split
        embeddings_size = self.sbert_embeddings.size(0)

        # Split and save the tensor
        for i in range(0, embeddings_size, split_size):
            end_idx = min(i + split_size, embeddings_size)
            part = self.sbert_embeddings[i:end_idx].clone()
            torch.save(part, os.path.join(self.sbert_embeddings_path, f"embeddings_part_{i//split_size}.pt"))

    def load_cache(self):
        with open(self.tokenized_docs_path, 'rb') as f:
            self.tokenized_docs = pickle.load(f)
        with open(self.bm25_path, 'rb') as f:
            self.bm25 = pickle.load(f)
        print("Loading SBERT embeddings")
        # Load and combine
        loaded_parts = []
        files = os.listdir(self.sbert_embeddings_path)

        # Sort numerically based on the numeric part of the filename
        sorted_files = sorted(files, key=lambda x: int(x.split('_')[2].split('.')[0]))
        counter = 0
        for file in sorted_files:
            if file.startswith("embeddings_part_") and file.endswith(".pt"):
                part_path = os.path.join(self.sbert_embeddings_path, file)
                loaded_parts.append(torch.load(part_path))
                if counter % 50 == 0:
                    print("Loaded", file)
                counter += 1

        self.sbert_embeddings = torch.cat(loaded_parts, dim=0)
        print("SBERT embeddings loaded")

    def get_docs(self, user_message: str, n: int = 30, bm25_only: bool = False, semantic_only: bool = False, scores_combination: bool = True, bm_koef: float = 0.75) -> [str]:
        # In case of BM25 only, return the top n documents based on BM25 scores, if somebody sets a couple
        # of flags to True, the func will return the top n documents based on the first flag set to True

        # remove "tell me a joke about" ot "tell me a joke and its title about" from the user message
        user_message = user_message.replace("tell me a joke about", "").replace("tell me a joke and its title about", "")

        if bm25_only:
            semantic_only = False
            scores_combination = False
            print("BM25 only")
            scores = torch.tensor(self._get_bm25_scores(user_message))
         
        elif semantic_only:
            scores_combination = False
            print("Semantic only")
            scores = self.get_semantic_scores(user_message)

        elif scores_combination:
            print("Combination")
            bm_scores = self._get_bm25_scores(user_message)
            semantic_scores = self.get_semantic_scores(user_message)
            scores = torch.tensor(bm_koef * bm_scores) + (1 - bm_koef) * semantic_scores

        # Sort the documents by their BM25 scores in descending order
        sorted_doc_indices = np.argsort(scores)

        result_docs = [self.docs[i] for i in sorted_doc_indices[-n:] if scores[i] > 0]

        return result_docs[::-1] # Return the top n documents in descending order which means the most relevant documents are first
    
    def _get_bm25_scores(self, user_message: str) -> np.array:
        tokenized_user_message = tokenize_text(user_message)
        return self.bm25.get_scores(tokenized_user_message)
    
    def get_semantic_scores(self, user_message: str) -> np.array:
        user_message_embedding = self.sbert.encode(user_message)
        scores = self.sbert.similarity(user_message_embedding, self.sbert_embeddings)
        return scores[0]