BartPoint commited on
Commit
aee4ff0
·
1 Parent(s): ee0b91f

Update vc_infer_pipeline.py

Browse files
Files changed (1) hide show
  1. vc_infer_pipeline.py +431 -363
vc_infer_pipeline.py CHANGED
@@ -1,363 +1,431 @@
1
- import numpy as np, parselmouth, torch, pdb
2
- from time import time as ttime
3
- import torch.nn.functional as F
4
- import scipy.signal as signal
5
- import pyworld, os, traceback, faiss,librosa
6
- from scipy import signal
7
- from functools import lru_cache
8
-
9
- bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
10
-
11
- input_audio_path2wav={}
12
- @lru_cache
13
- def cache_harvest_f0(input_audio_path,fs,f0max,f0min,frame_period):
14
- audio=input_audio_path2wav[input_audio_path]
15
- f0, t = pyworld.harvest(
16
- audio,
17
- fs=fs,
18
- f0_ceil=f0max,
19
- f0_floor=f0min,
20
- frame_period=frame_period,
21
- )
22
- f0 = pyworld.stonemask(audio, f0, t, fs)
23
- return f0
24
-
25
- def change_rms(data1,sr1,data2,sr2,rate):#1是输入音频,2是输出音频,rate是2的占比
26
- # print(data1.max(),data2.max())
27
- rms1 = librosa.feature.rms(y=data1, frame_length=sr1//2*2, hop_length=sr1//2)#每半秒一个点
28
- rms2 = librosa.feature.rms(y=data2, frame_length=sr2//2*2, hop_length=sr2//2)
29
- rms1=torch.from_numpy(rms1)
30
- rms1=F.interpolate(rms1.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
31
- rms2=torch.from_numpy(rms2)
32
- rms2=F.interpolate(rms2.unsqueeze(0), size=data2.shape[0],mode='linear').squeeze()
33
- rms2=torch.max(rms2,torch.zeros_like(rms2)+1e-6)
34
- data2*=(torch.pow(rms1,torch.tensor(1-rate))*torch.pow(rms2,torch.tensor(rate-1))).numpy()
35
- return data2
36
-
37
- class VC(object):
38
- def __init__(self, tgt_sr, config):
39
- self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
40
- config.x_pad,
41
- config.x_query,
42
- config.x_center,
43
- config.x_max,
44
- config.is_half,
45
- )
46
- self.sr = 16000 # hubert输入采样率
47
- self.window = 160 # 每帧点数
48
- self.t_pad = self.sr * self.x_pad # 每条前后pad时间
49
- self.t_pad_tgt = tgt_sr * self.x_pad
50
- self.t_pad2 = self.t_pad * 2
51
- self.t_query = self.sr * self.x_query # 查询切点前后查询时间
52
- self.t_center = self.sr * self.x_center # 查询切点位置
53
- self.t_max = self.sr * self.x_max # 免查询时长阈值
54
- self.device = config.device
55
-
56
- def get_f0(self, input_audio_path,x, p_len, f0_up_key, f0_method,filter_radius, inp_f0=None):
57
- global input_audio_path2wav
58
- time_step = self.window / self.sr * 1000
59
- f0_min = 50
60
- f0_max = 1100
61
- f0_mel_min = 1127 * np.log(1 + f0_min / 700)
62
- f0_mel_max = 1127 * np.log(1 + f0_max / 700)
63
- if f0_method == "pm":
64
- f0 = (
65
- parselmouth.Sound(x, self.sr)
66
- .to_pitch_ac(
67
- time_step=time_step / 1000,
68
- voicing_threshold=0.6,
69
- pitch_floor=f0_min,
70
- pitch_ceiling=f0_max,
71
- )
72
- .selected_array["frequency"]
73
- )
74
- pad_size = (p_len - len(f0) + 1) // 2
75
- if pad_size > 0 or p_len - len(f0) - pad_size > 0:
76
- f0 = np.pad(
77
- f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
78
- )
79
- elif f0_method == "harvest":
80
- input_audio_path2wav[input_audio_path]=x.astype(np.double)
81
- f0=cache_harvest_f0(input_audio_path,self.sr,f0_max,f0_min,10)
82
- if(filter_radius>2):
83
- f0 = signal.medfilt(f0, 3)
84
- f0 *= pow(2, f0_up_key / 12)
85
- # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
86
- tf0 = self.sr // self.window # 每秒f0点数
87
- if inp_f0 is not None:
88
- delta_t = np.round(
89
- (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
90
- ).astype("int16")
91
- replace_f0 = np.interp(
92
- list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
93
- )
94
- shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
95
- f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
96
- :shape
97
- ]
98
- # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
99
- f0bak = f0.copy()
100
- f0_mel = 1127 * np.log(1 + f0 / 700)
101
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
102
- f0_mel_max - f0_mel_min
103
- ) + 1
104
- f0_mel[f0_mel <= 1] = 1
105
- f0_mel[f0_mel > 255] = 255
106
- f0_coarse = np.rint(f0_mel).astype(int)
107
- return f0_coarse, f0bak # 1-0
108
-
109
- def vc(
110
- self,
111
- model,
112
- net_g,
113
- sid,
114
- audio0,
115
- pitch,
116
- pitchf,
117
- times,
118
- index,
119
- big_npy,
120
- index_rate,
121
- version,
122
- ): # ,file_index,file_big_npy
123
- feats = torch.from_numpy(audio0)
124
- if self.is_half:
125
- feats = feats.half()
126
- else:
127
- feats = feats.float()
128
- if feats.dim() == 2: # double channels
129
- feats = feats.mean(-1)
130
- assert feats.dim() == 1, feats.dim()
131
- feats = feats.view(1, -1)
132
- padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
133
-
134
- inputs = {
135
- "source": feats.to(self.device),
136
- "padding_mask": padding_mask,
137
- "output_layer": 9 if version == "v1" else 12,
138
- }
139
- t0 = ttime()
140
- with torch.no_grad():
141
- logits = model.extract_features(**inputs)
142
- feats = model.final_proj(logits[0])if version=="v1"else logits[0]
143
-
144
- if (
145
- isinstance(index, type(None)) == False
146
- and isinstance(big_npy, type(None)) == False
147
- and index_rate != 0
148
- ):
149
- npy = feats[0].cpu().numpy()
150
- if self.is_half:
151
- npy = npy.astype("float32")
152
-
153
- # _, I = index.search(npy, 1)
154
- # npy = big_npy[I.squeeze()]
155
-
156
- score, ix = index.search(npy, k=8)
157
- weight = np.square(1 / score)
158
- weight /= weight.sum(axis=1, keepdims=True)
159
- npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
160
-
161
- if self.is_half:
162
- npy = npy.astype("float16")
163
- feats = (
164
- torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
165
- + (1 - index_rate) * feats
166
- )
167
-
168
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
169
- t1 = ttime()
170
- p_len = audio0.shape[0] // self.window
171
- if feats.shape[1] < p_len:
172
- p_len = feats.shape[1]
173
- if pitch != None and pitchf != None:
174
- pitch = pitch[:, :p_len]
175
- pitchf = pitchf[:, :p_len]
176
- p_len = torch.tensor([p_len], device=self.device).long()
177
- with torch.no_grad():
178
- if pitch != None and pitchf != None:
179
- audio1 = (
180
- (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
181
- .data.cpu()
182
- .float()
183
- .numpy()
184
- )
185
- else:
186
- audio1 = (
187
- (net_g.infer(feats, p_len, sid)[0][0, 0])
188
- .data.cpu()
189
- .float()
190
- .numpy()
191
- )
192
- del feats, p_len, padding_mask
193
- if torch.cuda.is_available():
194
- torch.cuda.empty_cache()
195
- t2 = ttime()
196
- times[0] += t1 - t0
197
- times[2] += t2 - t1
198
- return audio1
199
-
200
- def pipeline(
201
- self,
202
- model,
203
- net_g,
204
- sid,
205
- audio,
206
- input_audio_path,
207
- times,
208
- f0_up_key,
209
- f0_method,
210
- file_index,
211
- # file_big_npy,
212
- index_rate,
213
- if_f0,
214
- filter_radius,
215
- tgt_sr,
216
- resample_sr,
217
- rms_mix_rate,
218
- version,
219
- f0_file=None,
220
- ):
221
- if (
222
- file_index != ""
223
- # and file_big_npy != ""
224
- # and os.path.exists(file_big_npy) == True
225
- and os.path.exists(file_index) == True
226
- and index_rate != 0
227
- ):
228
- try:
229
- index = faiss.read_index(file_index)
230
- # big_npy = np.load(file_big_npy)
231
- big_npy = index.reconstruct_n(0, index.ntotal)
232
- except:
233
- traceback.print_exc()
234
- index = big_npy = None
235
- else:
236
- index = big_npy = None
237
- audio = signal.filtfilt(bh, ah, audio)
238
- audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
239
- opt_ts = []
240
- if audio_pad.shape[0] > self.t_max:
241
- audio_sum = np.zeros_like(audio)
242
- for i in range(self.window):
243
- audio_sum += audio_pad[i : i - self.window]
244
- for t in range(self.t_center, audio.shape[0], self.t_center):
245
- opt_ts.append(
246
- t
247
- - self.t_query
248
- + np.where(
249
- np.abs(audio_sum[t - self.t_query : t + self.t_query])
250
- == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
251
- )[0][0]
252
- )
253
- s = 0
254
- audio_opt = []
255
- t = None
256
- t1 = ttime()
257
- audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
258
- p_len = audio_pad.shape[0] // self.window
259
- inp_f0 = None
260
- if hasattr(f0_file, "name") == True:
261
- try:
262
- with open(f0_file.name, "r") as f:
263
- lines = f.read().strip("\n").split("\n")
264
- inp_f0 = []
265
- for line in lines:
266
- inp_f0.append([float(i) for i in line.split(",")])
267
- inp_f0 = np.array(inp_f0, dtype="float32")
268
- except:
269
- traceback.print_exc()
270
- sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
271
- pitch, pitchf = None, None
272
- if if_f0 == 1:
273
- pitch, pitchf = self.get_f0(input_audio_path,audio_pad, p_len, f0_up_key, f0_method,filter_radius, inp_f0)
274
- pitch = pitch[:p_len]
275
- pitchf = pitchf[:p_len]
276
- if self.device == "mps":
277
- pitchf = pitchf.astype(np.float32)
278
- pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
279
- pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
280
- t2 = ttime()
281
- times[1] += t2 - t1
282
- for t in opt_ts:
283
- t = t // self.window * self.window
284
- if if_f0 == 1:
285
- audio_opt.append(
286
- self.vc(
287
- model,
288
- net_g,
289
- sid,
290
- audio_pad[s : t + self.t_pad2 + self.window],
291
- pitch[:, s // self.window : (t + self.t_pad2) // self.window],
292
- pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
293
- times,
294
- index,
295
- big_npy,
296
- index_rate,
297
- version,
298
- )[self.t_pad_tgt : -self.t_pad_tgt]
299
- )
300
- else:
301
- audio_opt.append(
302
- self.vc(
303
- model,
304
- net_g,
305
- sid,
306
- audio_pad[s : t + self.t_pad2 + self.window],
307
- None,
308
- None,
309
- times,
310
- index,
311
- big_npy,
312
- index_rate,
313
- version,
314
- )[self.t_pad_tgt : -self.t_pad_tgt]
315
- )
316
- s = t
317
- if if_f0 == 1:
318
- audio_opt.append(
319
- self.vc(
320
- model,
321
- net_g,
322
- sid,
323
- audio_pad[t:],
324
- pitch[:, t // self.window :] if t is not None else pitch,
325
- pitchf[:, t // self.window :] if t is not None else pitchf,
326
- times,
327
- index,
328
- big_npy,
329
- index_rate,
330
- version,
331
- )[self.t_pad_tgt : -self.t_pad_tgt]
332
- )
333
- else:
334
- audio_opt.append(
335
- self.vc(
336
- model,
337
- net_g,
338
- sid,
339
- audio_pad[t:],
340
- None,
341
- None,
342
- times,
343
- index,
344
- big_npy,
345
- index_rate,
346
- version,
347
- )[self.t_pad_tgt : -self.t_pad_tgt]
348
- )
349
- audio_opt = np.concatenate(audio_opt)
350
- if(rms_mix_rate!=1):
351
- audio_opt=change_rms(audio,16000,audio_opt,tgt_sr,rms_mix_rate)
352
- if(resample_sr>=16000 and tgt_sr!=resample_sr):
353
- audio_opt = librosa.resample(
354
- audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
355
- )
356
- audio_max=np.abs(audio_opt).max()/0.99
357
- max_int16=32768
358
- if(audio_max>1):max_int16/=audio_max
359
- audio_opt=(audio_opt * max_int16).astype(np.int16)
360
- del pitch, pitchf, sid
361
- if torch.cuda.is_available():
362
- torch.cuda.empty_cache()
363
- return audio_opt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np, parselmouth, torch, pdb
2
+ from time import time as ttime
3
+ import torch.nn.functional as F
4
+ import scipy.signal as signal
5
+ import pyworld, os, traceback, faiss, librosa, torchcrepe
6
+ from scipy import signal
7
+ from functools import lru_cache
8
+
9
+ bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
10
+
11
+ input_audio_path2wav = {}
12
+
13
+
14
+ @lru_cache
15
+ def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
16
+ audio = input_audio_path2wav[input_audio_path]
17
+ f0, t = pyworld.harvest(
18
+ audio,
19
+ fs=fs,
20
+ f0_ceil=f0max,
21
+ f0_floor=f0min,
22
+ frame_period=frame_period,
23
+ )
24
+ f0 = pyworld.stonemask(audio, f0, t, fs)
25
+ return f0
26
+
27
+
28
+ def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
29
+ # print(data1.max(),data2.max())
30
+ rms1 = librosa.feature.rms(
31
+ y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
32
+ ) # 每半秒一个点
33
+ rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
34
+ rms1 = torch.from_numpy(rms1)
35
+ rms1 = F.interpolate(
36
+ rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
37
+ ).squeeze()
38
+ rms2 = torch.from_numpy(rms2)
39
+ rms2 = F.interpolate(
40
+ rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
41
+ ).squeeze()
42
+ rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
43
+ data2 *= (
44
+ torch.pow(rms1, torch.tensor(1 - rate))
45
+ * torch.pow(rms2, torch.tensor(rate - 1))
46
+ ).numpy()
47
+ return data2
48
+
49
+
50
+ class VC(object):
51
+ def __init__(self, tgt_sr, config):
52
+ self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
53
+ config.x_pad,
54
+ config.x_query,
55
+ config.x_center,
56
+ config.x_max,
57
+ config.is_half,
58
+ )
59
+ self.sr = 16000 # hubert输入采样率
60
+ self.window = 160 # 每帧点数
61
+ self.t_pad = self.sr * self.x_pad # 每条前后pad时间
62
+ self.t_pad_tgt = tgt_sr * self.x_pad
63
+ self.t_pad2 = self.t_pad * 2
64
+ self.t_query = self.sr * self.x_query # 查询切点前后查询时间
65
+ self.t_center = self.sr * self.x_center # 查询切点位置
66
+ self.t_max = self.sr * self.x_max # 免查询时长阈值
67
+ self.device = config.device
68
+
69
+ def get_f0(
70
+ self,
71
+ input_audio_path,
72
+ x,
73
+ p_len,
74
+ f0_up_key,
75
+ f0_method,
76
+ filter_radius,
77
+ inp_f0=None,
78
+ ):
79
+ global input_audio_path2wav
80
+ time_step = self.window / self.sr * 1000
81
+ f0_min = 50
82
+ f0_max = 1100
83
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
84
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
85
+ if f0_method == "pm":
86
+ f0 = (
87
+ parselmouth.Sound(x, self.sr)
88
+ .to_pitch_ac(
89
+ time_step=time_step / 1000,
90
+ voicing_threshold=0.6,
91
+ pitch_floor=f0_min,
92
+ pitch_ceiling=f0_max,
93
+ )
94
+ .selected_array["frequency"]
95
+ )
96
+ pad_size = (p_len - len(f0) + 1) // 2
97
+ if pad_size > 0 or p_len - len(f0) - pad_size > 0:
98
+ f0 = np.pad(
99
+ f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
100
+ )
101
+ elif f0_method == "harvest":
102
+ input_audio_path2wav[input_audio_path] = x.astype(np.double)
103
+ f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
104
+ if filter_radius > 2:
105
+ f0 = signal.medfilt(f0, 3)
106
+ elif f0_method == "crepe":
107
+ model = "full"
108
+ # Pick a batch size that doesn't cause memory errors on your gpu
109
+ batch_size = 512
110
+ # Compute pitch using first gpu
111
+ audio = torch.tensor(np.copy(x))[None].float()
112
+ f0, pd = torchcrepe.predict(
113
+ audio,
114
+ self.sr,
115
+ self.window,
116
+ f0_min,
117
+ f0_max,
118
+ model,
119
+ batch_size=batch_size,
120
+ device=self.device,
121
+ return_periodicity=True,
122
+ )
123
+ pd = torchcrepe.filter.median(pd, 3)
124
+ f0 = torchcrepe.filter.mean(f0, 3)
125
+ f0[pd < 0.1] = 0
126
+ f0 = f0[0].cpu().numpy()
127
+ f0 *= pow(2, f0_up_key / 12)
128
+ # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
129
+ tf0 = self.sr // self.window # 每秒f0点数
130
+ if inp_f0 is not None:
131
+ delta_t = np.round(
132
+ (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
133
+ ).astype("int16")
134
+ replace_f0 = np.interp(
135
+ list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
136
+ )
137
+ shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
138
+ f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
139
+ :shape
140
+ ]
141
+ # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
142
+ f0bak = f0.copy()
143
+ f0_mel = 1127 * np.log(1 + f0 / 700)
144
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
145
+ f0_mel_max - f0_mel_min
146
+ ) + 1
147
+ f0_mel[f0_mel <= 1] = 1
148
+ f0_mel[f0_mel > 255] = 255
149
+ f0_coarse = np.rint(f0_mel).astype(np.int)
150
+ return f0_coarse, f0bak # 1-0
151
+
152
+ def vc(
153
+ self,
154
+ model,
155
+ net_g,
156
+ sid,
157
+ audio0,
158
+ pitch,
159
+ pitchf,
160
+ times,
161
+ index,
162
+ big_npy,
163
+ index_rate,
164
+ version,
165
+ protect,
166
+ ): # ,file_index,file_big_npy
167
+ feats = torch.from_numpy(audio0)
168
+ if self.is_half:
169
+ feats = feats.half()
170
+ else:
171
+ feats = feats.float()
172
+ if feats.dim() == 2: # double channels
173
+ feats = feats.mean(-1)
174
+ assert feats.dim() == 1, feats.dim()
175
+ feats = feats.view(1, -1)
176
+ padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
177
+
178
+ inputs = {
179
+ "source": feats.to(self.device),
180
+ "padding_mask": padding_mask,
181
+ "output_layer": 9 if version == "v1" else 12,
182
+ }
183
+ t0 = ttime()
184
+ with torch.no_grad():
185
+ logits = model.extract_features(**inputs)
186
+ feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
187
+ if protect < 0.5:
188
+ feats0 = feats.clone()
189
+ if (
190
+ isinstance(index, type(None)) == False
191
+ and isinstance(big_npy, type(None)) == False
192
+ and index_rate != 0
193
+ ):
194
+ npy = feats[0].cpu().numpy()
195
+ if self.is_half:
196
+ npy = npy.astype("float32")
197
+
198
+ # _, I = index.search(npy, 1)
199
+ # npy = big_npy[I.squeeze()]
200
+
201
+ score, ix = index.search(npy, k=8)
202
+ weight = np.square(1 / score)
203
+ weight /= weight.sum(axis=1, keepdims=True)
204
+ npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
205
+
206
+ if self.is_half:
207
+ npy = npy.astype("float16")
208
+ feats = (
209
+ torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
210
+ + (1 - index_rate) * feats
211
+ )
212
+
213
+ feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
214
+ if protect < 0.5:
215
+ feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
216
+ 0, 2, 1
217
+ )
218
+ t1 = ttime()
219
+ p_len = audio0.shape[0] // self.window
220
+ if feats.shape[1] < p_len:
221
+ p_len = feats.shape[1]
222
+ if pitch != None and pitchf != None:
223
+ pitch = pitch[:, :p_len]
224
+ pitchf = pitchf[:, :p_len]
225
+
226
+ if protect < 0.5:
227
+ pitchff = pitchf.clone()
228
+ pitchff[pitchf > 0] = 1
229
+ pitchff[pitchf < 1] = protect
230
+ pitchff = pitchff.unsqueeze(-1)
231
+ feats = feats * pitchff + feats0 * (1 - pitchff)
232
+ feats = feats.to(feats0.dtype)
233
+ p_len = torch.tensor([p_len], device=self.device).long()
234
+ with torch.no_grad():
235
+ if pitch != None and pitchf != None:
236
+ audio1 = (
237
+ (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
238
+ .data.cpu()
239
+ .float()
240
+ .numpy()
241
+ )
242
+ else:
243
+ audio1 = (
244
+ (net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
245
+ )
246
+ del feats, p_len, padding_mask
247
+ if torch.cuda.is_available():
248
+ torch.cuda.empty_cache()
249
+ t2 = ttime()
250
+ times[0] += t1 - t0
251
+ times[2] += t2 - t1
252
+ return audio1
253
+
254
+ def pipeline(
255
+ self,
256
+ model,
257
+ net_g,
258
+ sid,
259
+ audio,
260
+ input_audio_path,
261
+ times,
262
+ f0_up_key,
263
+ f0_method,
264
+ file_index,
265
+ # file_big_npy,
266
+ index_rate,
267
+ if_f0,
268
+ filter_radius,
269
+ tgt_sr,
270
+ resample_sr,
271
+ rms_mix_rate,
272
+ version,
273
+ protect,
274
+ f0_file=None,
275
+ ):
276
+ if (
277
+ file_index != ""
278
+ # and file_big_npy != ""
279
+ # and os.path.exists(file_big_npy) == True
280
+ and os.path.exists(file_index) == True
281
+ and index_rate != 0
282
+ ):
283
+ try:
284
+ index = faiss.read_index(file_index)
285
+ # big_npy = np.load(file_big_npy)
286
+ big_npy = index.reconstruct_n(0, index.ntotal)
287
+ except:
288
+ traceback.print_exc()
289
+ index = big_npy = None
290
+ else:
291
+ index = big_npy = None
292
+ audio = signal.filtfilt(bh, ah, audio)
293
+ audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
294
+ opt_ts = []
295
+ if audio_pad.shape[0] > self.t_max:
296
+ audio_sum = np.zeros_like(audio)
297
+ for i in range(self.window):
298
+ audio_sum += audio_pad[i : i - self.window]
299
+ for t in range(self.t_center, audio.shape[0], self.t_center):
300
+ opt_ts.append(
301
+ t
302
+ - self.t_query
303
+ + np.where(
304
+ np.abs(audio_sum[t - self.t_query : t + self.t_query])
305
+ == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
306
+ )[0][0]
307
+ )
308
+ s = 0
309
+ audio_opt = []
310
+ t = None
311
+ t1 = ttime()
312
+ audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
313
+ p_len = audio_pad.shape[0] // self.window
314
+ inp_f0 = None
315
+ if hasattr(f0_file, "name") == True:
316
+ try:
317
+ with open(f0_file.name, "r") as f:
318
+ lines = f.read().strip("\n").split("\n")
319
+ inp_f0 = []
320
+ for line in lines:
321
+ inp_f0.append([float(i) for i in line.split(",")])
322
+ inp_f0 = np.array(inp_f0, dtype="float32")
323
+ except:
324
+ traceback.print_exc()
325
+ sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
326
+ pitch, pitchf = None, None
327
+ if if_f0 == 1:
328
+ pitch, pitchf = self.get_f0(
329
+ input_audio_path,
330
+ audio_pad,
331
+ p_len,
332
+ f0_up_key,
333
+ f0_method,
334
+ filter_radius,
335
+ inp_f0,
336
+ )
337
+ pitch = pitch[:p_len]
338
+ pitchf = pitchf[:p_len]
339
+ if self.device == "mps":
340
+ pitchf = pitchf.astype(np.float32)
341
+ pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
342
+ pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
343
+ t2 = ttime()
344
+ times[1] += t2 - t1
345
+ for t in opt_ts:
346
+ t = t // self.window * self.window
347
+ if if_f0 == 1:
348
+ audio_opt.append(
349
+ self.vc(
350
+ model,
351
+ net_g,
352
+ sid,
353
+ audio_pad[s : t + self.t_pad2 + self.window],
354
+ pitch[:, s // self.window : (t + self.t_pad2) // self.window],
355
+ pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
356
+ times,
357
+ index,
358
+ big_npy,
359
+ index_rate,
360
+ version,
361
+ protect,
362
+ )[self.t_pad_tgt : -self.t_pad_tgt]
363
+ )
364
+ else:
365
+ audio_opt.append(
366
+ self.vc(
367
+ model,
368
+ net_g,
369
+ sid,
370
+ audio_pad[s : t + self.t_pad2 + self.window],
371
+ None,
372
+ None,
373
+ times,
374
+ index,
375
+ big_npy,
376
+ index_rate,
377
+ version,
378
+ protect,
379
+ )[self.t_pad_tgt : -self.t_pad_tgt]
380
+ )
381
+ s = t
382
+ if if_f0 == 1:
383
+ audio_opt.append(
384
+ self.vc(
385
+ model,
386
+ net_g,
387
+ sid,
388
+ audio_pad[t:],
389
+ pitch[:, t // self.window :] if t is not None else pitch,
390
+ pitchf[:, t // self.window :] if t is not None else pitchf,
391
+ times,
392
+ index,
393
+ big_npy,
394
+ index_rate,
395
+ version,
396
+ protect,
397
+ )[self.t_pad_tgt : -self.t_pad_tgt]
398
+ )
399
+ else:
400
+ audio_opt.append(
401
+ self.vc(
402
+ model,
403
+ net_g,
404
+ sid,
405
+ audio_pad[t:],
406
+ None,
407
+ None,
408
+ times,
409
+ index,
410
+ big_npy,
411
+ index_rate,
412
+ version,
413
+ protect,
414
+ )[self.t_pad_tgt : -self.t_pad_tgt]
415
+ )
416
+ audio_opt = np.concatenate(audio_opt)
417
+ if rms_mix_rate != 1:
418
+ audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
419
+ if resample_sr >= 16000 and tgt_sr != resample_sr:
420
+ audio_opt = librosa.resample(
421
+ audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
422
+ )
423
+ audio_max = np.abs(audio_opt).max() / 0.99
424
+ max_int16 = 32768
425
+ if audio_max > 1:
426
+ max_int16 /= audio_max
427
+ audio_opt = (audio_opt * max_int16).astype(np.int16)
428
+ del pitch, pitchf, sid
429
+ if torch.cuda.is_available():
430
+ torch.cuda.empty_cache()
431
+ return audio_opt