Spaces:
Runtime error
Runtime error
update app.py
Browse files
app.py
CHANGED
@@ -1,472 +1,476 @@
|
|
1 |
-
import sys
|
2 |
-
sys.path.append('./')
|
3 |
-
from PIL import Image
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
import
|
20 |
-
from
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
import
|
25 |
-
|
26 |
-
from
|
27 |
-
from
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
)
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
#
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
#
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
""
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
-
|
204 |
-
-
|
205 |
-
-
|
206 |
-
-
|
207 |
-
|
208 |
-
|
209 |
-
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
with gr.Column():
|
380 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
381 |
-
|
382 |
-
|
383 |
-
with gr.Column():
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
with gr.Column():
|
435 |
-
|
436 |
-
# densepose_img = gr.Gallery(label="All images", show_label=False, elem_id="all-images", columns=[3], rows=[1], object_fit="contain", height="auto")
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('./')
|
3 |
+
from PIL import Image
|
4 |
+
try:
|
5 |
+
import cv2
|
6 |
+
print("OpenCV is installed correctly.")
|
7 |
+
except ImportError:
|
8 |
+
print("OpenCV is not installed.")
|
9 |
+
import gradio as gr
|
10 |
+
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
11 |
+
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
12 |
+
from src.unet_hacked_tryon import UNet2DConditionModel
|
13 |
+
from transformers import (
|
14 |
+
CLIPImageProcessor,
|
15 |
+
CLIPVisionModelWithProjection,
|
16 |
+
CLIPTextModel,
|
17 |
+
CLIPTextModelWithProjection,
|
18 |
+
)
|
19 |
+
from diffusers import DDPMScheduler,AutoencoderKL
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import os
|
24 |
+
from transformers import AutoTokenizer
|
25 |
+
import numpy as np
|
26 |
+
from utils_mask import get_mask_location
|
27 |
+
from torchvision import transforms
|
28 |
+
import apply_net
|
29 |
+
from preprocess.humanparsing.run_parsing import Parsing
|
30 |
+
from preprocess.openpose.run_openpose import OpenPose
|
31 |
+
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
|
32 |
+
from torchvision.transforms.functional import to_pil_image
|
33 |
+
|
34 |
+
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
35 |
+
|
36 |
+
def pil_to_binary_mask(pil_image, threshold=0):
|
37 |
+
np_image = np.array(pil_image)
|
38 |
+
grayscale_image = Image.fromarray(np_image).convert("L")
|
39 |
+
binary_mask = np.array(grayscale_image) > threshold
|
40 |
+
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
41 |
+
for i in range(binary_mask.shape[0]):
|
42 |
+
for j in range(binary_mask.shape[1]):
|
43 |
+
if binary_mask[i,j] == True :
|
44 |
+
mask[i,j] = 1
|
45 |
+
mask = (mask*255).astype(np.uint8)
|
46 |
+
output_mask = Image.fromarray(mask)
|
47 |
+
return output_mask
|
48 |
+
|
49 |
+
|
50 |
+
base_path = 'yisol/IDM-VTON'
|
51 |
+
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
52 |
+
|
53 |
+
unet = UNet2DConditionModel.from_pretrained(
|
54 |
+
base_path,
|
55 |
+
subfolder="unet",
|
56 |
+
torch_dtype=torch.float16,
|
57 |
+
)
|
58 |
+
unet.requires_grad_(False)
|
59 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
60 |
+
base_path,
|
61 |
+
subfolder="tokenizer",
|
62 |
+
revision=None,
|
63 |
+
use_fast=False,
|
64 |
+
)
|
65 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
66 |
+
base_path,
|
67 |
+
subfolder="tokenizer_2",
|
68 |
+
revision=None,
|
69 |
+
use_fast=False,
|
70 |
+
)
|
71 |
+
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
72 |
+
|
73 |
+
text_encoder_one = CLIPTextModel.from_pretrained(
|
74 |
+
base_path,
|
75 |
+
subfolder="text_encoder",
|
76 |
+
torch_dtype=torch.float16,
|
77 |
+
)
|
78 |
+
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
79 |
+
base_path,
|
80 |
+
subfolder="text_encoder_2",
|
81 |
+
torch_dtype=torch.float16,
|
82 |
+
)
|
83 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
84 |
+
base_path,
|
85 |
+
subfolder="image_encoder",
|
86 |
+
torch_dtype=torch.float16,
|
87 |
+
)
|
88 |
+
vae = AutoencoderKL.from_pretrained(base_path,
|
89 |
+
subfolder="vae",
|
90 |
+
torch_dtype=torch.float16,
|
91 |
+
)
|
92 |
+
|
93 |
+
# "stabilityai/stable-diffusion-xl-base-1.0",
|
94 |
+
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
95 |
+
base_path,
|
96 |
+
subfolder="unet_encoder",
|
97 |
+
torch_dtype=torch.float16,
|
98 |
+
)
|
99 |
+
|
100 |
+
parsing_model = Parsing(0)
|
101 |
+
openpose_model = OpenPose(0)
|
102 |
+
|
103 |
+
UNet_Encoder.requires_grad_(False)
|
104 |
+
image_encoder.requires_grad_(False)
|
105 |
+
vae.requires_grad_(False)
|
106 |
+
unet.requires_grad_(False)
|
107 |
+
text_encoder_one.requires_grad_(False)
|
108 |
+
text_encoder_two.requires_grad_(False)
|
109 |
+
tensor_transfrom = transforms.Compose(
|
110 |
+
[
|
111 |
+
transforms.ToTensor(),
|
112 |
+
transforms.Normalize([0.5], [0.5]),
|
113 |
+
]
|
114 |
+
)
|
115 |
+
|
116 |
+
pipe = TryonPipeline.from_pretrained(
|
117 |
+
base_path,
|
118 |
+
unet=unet,
|
119 |
+
vae=vae,
|
120 |
+
feature_extractor= CLIPImageProcessor(),
|
121 |
+
text_encoder = text_encoder_one,
|
122 |
+
text_encoder_2 = text_encoder_two,
|
123 |
+
tokenizer = tokenizer_one,
|
124 |
+
tokenizer_2 = tokenizer_two,
|
125 |
+
scheduler = noise_scheduler,
|
126 |
+
image_encoder=image_encoder,
|
127 |
+
torch_dtype=torch.float16,
|
128 |
+
)
|
129 |
+
pipe.unet_encoder = UNet_Encoder
|
130 |
+
|
131 |
+
# Function to visualize parsing
|
132 |
+
def visualize_parsing(image, mask):
|
133 |
+
"""
|
134 |
+
Visualize the parsing by applying a color map to the segmentation mask.
|
135 |
+
"""
|
136 |
+
# Ensure image is in RGB format and convert to numpy array
|
137 |
+
image_array = np.array(image.convert('RGB'), dtype=np.uint8)
|
138 |
+
|
139 |
+
# Create a color map
|
140 |
+
num_classes = np.max(mask) + 1
|
141 |
+
colors = np.random.randint(0, 255, size=(num_classes, 3), dtype=np.uint8)
|
142 |
+
|
143 |
+
# Apply color map to the mask
|
144 |
+
color_mask = colors[mask.astype(int)]
|
145 |
+
|
146 |
+
# Ensure color_mask is correctly shaped and typed
|
147 |
+
color_mask = np.array(color_mask, dtype=np.uint8)
|
148 |
+
|
149 |
+
# Combine the original image and the color mask
|
150 |
+
combined_image = cv2.addWeighted(image_array, 0.5, color_mask, 0.5, 0)
|
151 |
+
|
152 |
+
return Image.fromarray(combined_image)
|
153 |
+
|
154 |
+
def process_densepose(human_img):
|
155 |
+
"""
|
156 |
+
Processes the human image using DensePose and returns the DensePose image.
|
157 |
+
Assumes human_img is a dictionary with a 'background' key pointing to the image path.
|
158 |
+
"""
|
159 |
+
# Load image from path
|
160 |
+
image_path = human_img['background'] # Assuming 'background' is the correct key
|
161 |
+
if isinstance(image_path, Image.Image):
|
162 |
+
image = image_path
|
163 |
+
else:
|
164 |
+
image = Image.open(image_path) # Only call Image.open if it's not already an Image object
|
165 |
+
|
166 |
+
# Apply EXIF orientation and resize
|
167 |
+
human_img_arg = _apply_exif_orientation(image.resize((384, 512)))
|
168 |
+
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
169 |
+
|
170 |
+
# Setup DensePose arguments
|
171 |
+
args = apply_net.create_argument_parser().parse_args(
|
172 |
+
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')
|
173 |
+
)
|
174 |
+
pose_img = args.func(args, human_img_arg)
|
175 |
+
pose_img = pose_img[:, :, ::-1] # Convert from BGR to RGB
|
176 |
+
pose_img = Image.fromarray(pose_img).resize((768, 1024))
|
177 |
+
|
178 |
+
return pose_img, pose_img
|
179 |
+
|
180 |
+
def process_human_parsing(human_img):
|
181 |
+
"""
|
182 |
+
Processes the human image to perform segmentation using a human parsing model.
|
183 |
+
"""
|
184 |
+
|
185 |
+
image_path = human_img['background'] # Assuming 'background' is the correct key
|
186 |
+
if isinstance(image_path, Image.Image):
|
187 |
+
image = image_path
|
188 |
+
else:
|
189 |
+
image = Image.open(image_path) # Only call Image.open if it's not already an Image object
|
190 |
+
|
191 |
+
image = image.resize((384, 512))
|
192 |
+
model_parse, _ = parsing_model(image)
|
193 |
+
# parsing_image = visualize_parsing(human_img, model_parse) # Visualization function needed
|
194 |
+
# vis_image = visualize_parsing(image, model_parse)
|
195 |
+
# state_message = "Human parsing processing completed"
|
196 |
+
return model_parse
|
197 |
+
|
198 |
+
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
|
199 |
+
"""
|
200 |
+
Preprocesses images and generates outputs using various models.
|
201 |
+
|
202 |
+
Parameters:
|
203 |
+
- human_img: PIL image of the human.
|
204 |
+
- garm_img: PIL image of the garment.
|
205 |
+
- garment_des: Description of the garment.
|
206 |
+
- is_checked: Boolean flag indicating whether to use auto-generated mask.
|
207 |
+
- is_checked_crop: Boolean flag indicating whether to use auto-crop & resizing.
|
208 |
+
- denoise_steps: Number of denoising steps.
|
209 |
+
- seed: Seed for random generator.
|
210 |
+
- pose_img: DensePose image generated in the previous step.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
- Processed images: Depending on the conditions, it returns human_img_orig, mask_gray, and final output images.
|
214 |
+
"""
|
215 |
+
openpose_model.preprocessor.body_estimation.model.to(device)
|
216 |
+
pipe.to(device)
|
217 |
+
pipe.unet_encoder.to(device)
|
218 |
+
|
219 |
+
garm_img= garm_img.convert("RGB").resize((768,1024))
|
220 |
+
human_img_orig = dict["background"].convert("RGB")
|
221 |
+
|
222 |
+
if is_checked_crop:
|
223 |
+
width, height = human_img_orig.size
|
224 |
+
target_width = int(min(width, height * (3 / 4)))
|
225 |
+
target_height = int(min(height, width * (4 / 3)))
|
226 |
+
left = (width - target_width) / 2
|
227 |
+
top = (height - target_height) / 2
|
228 |
+
right = (width + target_width) / 2
|
229 |
+
bottom = (height + target_height) / 2
|
230 |
+
cropped_img = human_img_orig.crop((left, top, right, bottom))
|
231 |
+
crop_size = cropped_img.size
|
232 |
+
human_img = cropped_img.resize((768,1024))
|
233 |
+
else:
|
234 |
+
human_img = human_img_orig.resize((768,1024))
|
235 |
+
|
236 |
+
|
237 |
+
if is_checked:
|
238 |
+
keypoints = openpose_model(human_img.resize((384,512)))
|
239 |
+
print(keypoints)
|
240 |
+
model_parse, _ = parsing_model(human_img.resize((384,512)))
|
241 |
+
print(model_parse)
|
242 |
+
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
|
243 |
+
mask = mask.resize((768,1024))
|
244 |
+
else:
|
245 |
+
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
246 |
+
# mask = transforms.ToTensor()(mask)
|
247 |
+
# mask = mask.unsqueeze(0)
|
248 |
+
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
249 |
+
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
|
250 |
+
|
251 |
+
|
252 |
+
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
|
253 |
+
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
|
258 |
+
# verbosity = getattr(args, "verbosity", None)
|
259 |
+
pose_img = args.func(args,human_img_arg)
|
260 |
+
pose_img = pose_img[:,:,::-1]
|
261 |
+
pose_img = Image.fromarray(pose_img).resize((768,1024))
|
262 |
+
|
263 |
+
with torch.no_grad():
|
264 |
+
# Extract the images
|
265 |
+
with torch.cuda.amp.autocast():
|
266 |
+
with torch.no_grad():
|
267 |
+
prompt = "model is wearing " + garment_des
|
268 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
269 |
+
with torch.inference_mode():
|
270 |
+
(
|
271 |
+
prompt_embeds,
|
272 |
+
negative_prompt_embeds,
|
273 |
+
pooled_prompt_embeds,
|
274 |
+
negative_pooled_prompt_embeds,
|
275 |
+
) = pipe.encode_prompt(
|
276 |
+
prompt,
|
277 |
+
num_images_per_prompt=1,
|
278 |
+
do_classifier_free_guidance=True,
|
279 |
+
negative_prompt=negative_prompt,
|
280 |
+
)
|
281 |
+
|
282 |
+
prompt = "a photo of " + garment_des
|
283 |
+
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
284 |
+
if not isinstance(prompt, List):
|
285 |
+
prompt = [prompt] * 1
|
286 |
+
if not isinstance(negative_prompt, List):
|
287 |
+
negative_prompt = [negative_prompt] * 1
|
288 |
+
with torch.inference_mode():
|
289 |
+
(
|
290 |
+
prompt_embeds_c,
|
291 |
+
_,
|
292 |
+
_,
|
293 |
+
_,
|
294 |
+
) = pipe.encode_prompt(
|
295 |
+
prompt,
|
296 |
+
num_images_per_prompt=1,
|
297 |
+
do_classifier_free_guidance=False,
|
298 |
+
negative_prompt=negative_prompt,
|
299 |
+
)
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
|
304 |
+
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
|
305 |
+
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
306 |
+
images = pipe(
|
307 |
+
prompt_embeds=prompt_embeds.to(device,torch.float16),
|
308 |
+
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
|
309 |
+
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
|
310 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
|
311 |
+
num_inference_steps=denoise_steps,
|
312 |
+
generator=generator,
|
313 |
+
strength = 1.0,
|
314 |
+
pose_img = pose_img.to(device,torch.float16),
|
315 |
+
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
|
316 |
+
cloth = garm_tensor.to(device,torch.float16),
|
317 |
+
mask_image=mask,
|
318 |
+
image=human_img,
|
319 |
+
height=1024,
|
320 |
+
width=768,
|
321 |
+
ip_adapter_image = garm_img.resize((768,1024)),
|
322 |
+
guidance_scale=2.0,
|
323 |
+
)[0]
|
324 |
+
|
325 |
+
if is_checked_crop:
|
326 |
+
out_img = images[0].resize(crop_size)
|
327 |
+
human_img_orig.paste(out_img, (int(left), int(top)))
|
328 |
+
return human_img_orig, mask_gray
|
329 |
+
else:
|
330 |
+
# out_img = images[0].resize(crop_size)
|
331 |
+
return images[0], mask_gray
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
+
garm_list = os.listdir(os.path.join(example_path,"cloth"))
|
338 |
+
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
|
339 |
+
|
340 |
+
human_list = os.listdir(os.path.join(example_path,"human"))
|
341 |
+
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
|
342 |
+
|
343 |
+
human_ex_list = []
|
344 |
+
for ex_human in human_list_path:
|
345 |
+
ex_dict= {}
|
346 |
+
ex_dict['background'] = ex_human
|
347 |
+
ex_dict['layers'] = None
|
348 |
+
ex_dict['composite'] = None
|
349 |
+
human_ex_list.append(ex_dict)
|
350 |
+
|
351 |
+
##default human
|
352 |
+
|
353 |
+
|
354 |
+
image_blocks = gr.Blocks().queue()
|
355 |
+
with image_blocks as demo:
|
356 |
+
with gr.Row():
|
357 |
+
with gr.Column():
|
358 |
+
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
359 |
+
with gr.Row():
|
360 |
+
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
|
361 |
+
with gr.Row():
|
362 |
+
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
|
363 |
+
|
364 |
+
example = gr.Examples(
|
365 |
+
inputs=imgs,
|
366 |
+
examples_per_page=10,
|
367 |
+
examples=human_ex_list
|
368 |
+
)
|
369 |
+
|
370 |
+
with gr.Column():
|
371 |
+
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
|
372 |
+
with gr.Row(elem_id="prompt-container"):
|
373 |
+
with gr.Row():
|
374 |
+
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
|
375 |
+
example = gr.Examples(
|
376 |
+
inputs=garm_img,
|
377 |
+
examples_per_page=8,
|
378 |
+
examples=garm_list_path)
|
379 |
+
with gr.Column():
|
380 |
+
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
381 |
+
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
|
382 |
+
|
383 |
+
with gr.Column():
|
384 |
+
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
385 |
+
image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
|
386 |
+
|
387 |
+
with gr.Column():
|
388 |
+
densepose_img_out = gr.Image(label="Output", elem_id="densepose-img",show_share_button=False)
|
389 |
+
# densepose_img = gr.Gallery(label="All images", show_label=False, elem_id="all-images", columns=[3], rows=[1], object_fit="contain", height="auto")
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
with gr.Column():
|
394 |
+
try_button = gr.Button(value="Try-on")
|
395 |
+
with gr.Accordion(label="Advanced Settings", open=False):
|
396 |
+
with gr.Row():
|
397 |
+
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
|
398 |
+
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
399 |
+
|
400 |
+
densepose_state = gr.State(None)
|
401 |
+
|
402 |
+
# Define the steps in sequence
|
403 |
+
image_blocks = gr.Blocks().queue()
|
404 |
+
with image_blocks as demo:
|
405 |
+
with gr.Row():
|
406 |
+
with gr.Column():
|
407 |
+
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
|
408 |
+
with gr.Row():
|
409 |
+
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
|
410 |
+
with gr.Row():
|
411 |
+
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
|
412 |
+
|
413 |
+
example = gr.Examples(
|
414 |
+
inputs=imgs,
|
415 |
+
examples_per_page=10,
|
416 |
+
examples=human_ex_list
|
417 |
+
)
|
418 |
+
|
419 |
+
with gr.Column():
|
420 |
+
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
|
421 |
+
with gr.Row(elem_id="prompt-container"):
|
422 |
+
with gr.Row():
|
423 |
+
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
|
424 |
+
example = gr.Examples(
|
425 |
+
inputs=garm_img,
|
426 |
+
examples_per_page=8,
|
427 |
+
examples=garm_list_path)
|
428 |
+
with gr.Column():
|
429 |
+
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
|
430 |
+
|
431 |
+
with gr.Column():
|
432 |
+
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
|
433 |
+
|
434 |
+
with gr.Column():
|
435 |
+
densepose_img_out = gr.Image(label="Dense-pose", elem_id="densepose-img", show_share_button=False)
|
436 |
+
# densepose_img = gr.Gallery(label="All images", show_label=False, elem_id="all-images", columns=[3], rows=[1], object_fit="contain", height="auto")
|
437 |
+
|
438 |
+
with gr.Column():
|
439 |
+
human_parse_img_out = gr.Image(label="Human-Parse", elem_id="humanparse-img", show_share_button=False)
|
440 |
+
# densepose_img = gr.Gallery(label="All images", show_label=False, elem_id="all-images", columns=[3], rows=[1], object_fit="contain", height="auto")
|
441 |
+
|
442 |
+
with gr.Column():
|
443 |
+
try_button = gr.Button(value="Try-on")
|
444 |
+
get_denspose =gr.Button(value="Get-DensePose")
|
445 |
+
get_humanparse =gr.Button(value="Get-HumanParse")
|
446 |
+
with gr.Accordion(label="Advanced Settings", open=False):
|
447 |
+
with gr.Row():
|
448 |
+
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
|
449 |
+
seed = gr.Number(label="Seed", minimum=-1, maximum =2147483647, step=1, value=42)
|
450 |
+
|
451 |
+
densepose_state = gr.State(None)
|
452 |
+
|
453 |
+
# Define the steps in sequence
|
454 |
+
get_denspose.click(
|
455 |
+
fn=process_densepose,
|
456 |
+
inputs=[imgs],
|
457 |
+
outputs=[densepose_img_out, densepose_state],
|
458 |
+
api_name='process_densepose'
|
459 |
+
)
|
460 |
+
get_humanparse.click(
|
461 |
+
fn=process_human_parsing,
|
462 |
+
inputs=[imgs],
|
463 |
+
outputs=[human_parse_img_out],
|
464 |
+
api_name='process_humanparse'
|
465 |
+
)
|
466 |
+
try_button.click(
|
467 |
+
fn=start_tryon,
|
468 |
+
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed],
|
469 |
+
outputs=[image_out, masked_img],
|
470 |
+
api_name='start_tryon'
|
471 |
+
)
|
472 |
+
|
473 |
+
image_blocks.launch(server_name="0.0.0.0", server_port=3000)
|
474 |
+
|
475 |
+
|
476 |
+
|