import gradio as gr from transformers import pipeline, AutoTokenizer from huggingsound import SpeechRecognitionModel import numpy as np import soundfile as sf import tempfile # Load the model for speech recognition model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") translator = pipeline("text2text-generation", model="Baghdad99/saad-english-text-to-hausa-text") tts = pipeline("text-to-speech", model="Baghdad99/hausa_voice_tts") # Define the function to translate speech def translate_speech(audio_data_tuple): print(f"Type of audio: {type(audio_data_tuple)}, Value of audio: {audio_data_tuple}") # Debug line # Extract the audio data from the tuple sample_rate, audio_data = audio_data_tuple # Save the audio data to a temporary file with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file: sf.write(temp_audio_file.name, audio_data, sample_rate) # Use the speech recognition model to transcribe the audio output = model.transcribe([temp_audio_file.name]) print(f"Output: {output}") # Print the output to see what it contains # Check if the output contains 'transcription' if 'transcription' in output: transcription = output["transcription"] else: print("The output does not contain 'transcription'") return # Use the translation pipeline to translate the transcription translated_text = translator(transciption, return_tensors="pt") print(f"Translated text: {translated_text}") # Print the translated text to see what it contains # Check if the translated text contains 'generated_token_ids' if 'generated_token_ids' in translated_text[0]: # Decode the tokens into text translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids']) else: print("The translated text does not contain 'generated_token_ids'") return # Use the text-to-speech pipeline to synthesize the translated text synthesised_speech = tts(translated_text_str) print(f"Synthesised speech: {synthesised_speech}") # Print the synthesised speech to see what it contains # Check if the synthesised speech contains 'audio' if 'audio' in synthesised_speech: synthesised_speech_data = synthesised_speech['audio'] else: print("The synthesised speech does not contain 'audio'") return # Flatten the audio data synthesised_speech_data = synthesised_speech_data.flatten() # Scale the audio data to the range of int16 format synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16) return 16000, synthesised_speech # Define the Gradio interface iface = gr.Interface( fn=translate_speech, inputs=gr.inputs.Audio(source="microphone"), # Change this line outputs=gr.outputs.Audio(type="numpy"), title="Hausa to English Translation", description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." ) iface.launch()