import gradio as gr from transformers import pipeline import numpy as np # Load the pipeline for speech recognition and translation pipe = pipeline( "automatic-speech-recognition", model="Baghdad99/saad-speech-recognition-hausa-audio-to-text", tokenizer="Baghdad99/saad-speech-recognition-hausa-audio-to-text" ) translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text") tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts") # Define the function to translate speech def translate_speech(audio): # Separate the sample rate and the audio data sample_rate, audio_data = audio # Use the speech recognition pipeline to transcribe the audio output = pipe(audio_data) print(f"Output: {output}") # Print the output to see what it contains # Check if the output contains 'text' if 'text' in output: transcription = output["text"] else: print("The output does not contain 'text'") return # Use the translation pipeline to translate the transcription translated_text = translator(transcription, return_tensors="pt", padding=True) # Use the text-to-speech pipeline to synthesize the translated text synthesised_speech = tts(translated_text, return_tensors='pt') # Define the max_range variable max_range = 32767 # You can adjust this value based on your requirements synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) return 16000, synthesised_speech # Define the Gradio interface iface = gr.Interface( fn=translate_speech, inputs=gr.inputs.Audio(source="microphone", type="numpy"), outputs=gr.outputs.Audio(type="numpy"), title="Hausa to English Translation", description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." ) iface.launch()