import gradio as gr from gradio_client import Client import requests import soundfile as sf import numpy as np import tempfile from pydub import AudioSegment import io # Define the Hugging Face Inference API URLs and headers TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts" TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text" headers = {"Authorization": "Bearer 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"} # Define the Gradio client client = Client("https://baghdad99-baghdad99-saad-speech-recognition-haus-28684af.hf.space/--replicas/22eapbdds/") # Define the function to query the Hugging Face Inference API def query(api_url, payload): response = requests.post(api_url, headers=headers, json=payload) return response.json() # Define the function to translate speech def translate_speech(audio_file): print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line # Use the ASR pipeline to transcribe the audio result = client.predict(audio_file.name, api_name="/predict") # Change this line transcription = result["text"] # Use the translation pipeline to translate the transcription translated_text = query(TRANSLATION_API_URL, {"inputs": transcription}) # Use the TTS pipeline to synthesize the translated text response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text}) audio_bytes = response.content # Convert the audio bytes to an audio segment audio_segment = AudioSegment.from_mp3(io.BytesIO(audio_bytes)) # Change this line # Convert the audio segment to a numpy array audio_data = np.array(audio_segment.get_array_of_samples()) if audio_segment.channels == 2: audio_data = audio_data.reshape((-1, 2)) return audio_data # Define the Gradio interface iface = gr.Interface( fn=translate_speech, inputs=gr.inputs.File(type="file"), # Change this line outputs=gr.outputs.Audio(type="numpy"), title="Hausa to English Translation", description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." ) iface.launch()