TroL / utils /utils.py
BK-Lee's picture
v1
eacf0bd
raw
history blame
8.44 kB
import os
import gc
import torch
output_filtering = lambda x, model: x.split(model.prompt_rule["test_start"])[-1].split(model.prompt_rule["test_end"])[0].strip()
def memory_optimization():
# memory deallocation
gc.collect()
# removing cache
torch.cuda.empty_cache()
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
assert False
def freeze_model(model):
for param in model.parameters():
param.requires_grad=False
def switching_model(model, updating_param):
if updating_param == 'all':
for name, param in model.named_parameters():
param.requires_grad=True
return
for name, param in model.named_parameters():
if 'float' in str(param.dtype):
if sum([up_param in name for up_param in updating_param]):
param.requires_grad=True
else:
param.requires_grad=False
def weight_upload(tensor_dict, model):
used_name = []
for name, param in tensor_dict.items():
split_name = name.split('.')
traversal = model
for module_name in split_name:
traversal = getattr(traversal, module_name)
# logging
# print(f'{name}: {(traversal==param.to(traversal.device)).sum()}/{(traversal!=param.to(traversal.device)).sum()}')
setattr(traversal, 'data', param.to(traversal.device))
used_name.append(name)
for name in used_name:
del tensor_dict[name]
def find_special_token(string, special_token):
start = 0
while True:
start = string.find(special_token, start)
if start == -1: return
yield start
start += len(special_token) # use start += 1 to find overlapping matches
def add_bundle_tokens(input_string, special_token, num):
# number of special tokens in input_string
num_special_tokens = len(list(find_special_token(input_string, special_token)))
# No special token -> return the raw
if not num_special_tokens:
return input_string
result = ""
index = 0
while index < len(input_string):
if input_string[index:index + len(special_token)] == special_token:
result += special_token * num
index += len(special_token)
else:
result += input_string[index]
index += 1
assert len(list(find_special_token(result, special_token))) == num_special_tokens * num
return result
def make_instruction(question, dataset, prompt_rule):
system_prompt = make_human_string("You are AI model created by Byung-Kwan Lee, Ph.D. candidate, KAIST EE, of which AI model name is TroL (Traversal of Layers).",
"You must give helpful, detailed, and polite answers to the user's questions",
split=' ')
if dataset != "mmmu" and dataset != "mathverse" and dataset != "hallusionbench" and dataset != "demo":
question = "<image>" + question
if dataset in ["sqa", "mmbench", "mmbench_cn", "mmbench_dev", "mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar"]:
question = question + "\nAnswer with the option's letter from the given choices directly."
elif dataset in ["vqav2", "gqa", "pope", "chartqa"]:
question = question + "\nAnswer the question using a single word or phrase."
elif dataset in ["vizwiz"]:
question = question + "\nWhen the provided information is insufficient, respond with 'Unanswerable'. Answer the question using a single word or phrase."
elif dataset in ["mmmu"]:
if "A." in question:
question = question + "\nAnswer with the option's letter from the given choices directly."
else:
question = question + "\nAnswer the question using a single word or phrase."
elif dataset in ["hallusionbench"]:
if "Please answer yes or no." not in question:
question = question + "\nPlease answer yes or no."
qa_prompt = make_human_string(prompt_rule["system_start"]+system_prompt+prompt_rule["system_end"],
prompt_rule["user_start"]+question+prompt_rule["user_end"],
prompt_rule["assistant_start"],
split=prompt_rule["split"])
return qa_prompt
def make_human_string(*args, split):
out = ''
for i, arg in enumerate(args):
out += arg
if i != len(args)-1:
out += split
return out
def get_max_new_tokens(data_name):
if data_name.lower() in ["mme", "pope", "sqa", "mmbench", "mmbench_cn", "mmbench_dev","mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar", "vqav2", "gqa", "chartqa", "hallusionbench", "textvqa", "mmmu"]:
return 5
if data_name.lower() in ["llava", "mm-vet"]:
return 1024
else:
return 512
def pixel_shuffle(x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
x = x.permute(0, 2, 1, 3).contiguous()
return x
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
dynamic_transform = build_transform(input_size=448)
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=True):
from torchvision.transforms.functional import to_pil_image
image = to_pil_image(image)
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images