|
import os |
|
import gc |
|
import torch |
|
|
|
output_filtering = lambda x, model: x.split(model.prompt_rule["test_start"])[-1].split(model.prompt_rule["test_end"])[0].strip() |
|
|
|
def memory_optimization(): |
|
|
|
gc.collect() |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
def str2bool(v): |
|
if v.lower() in ('yes', 'true', 't', 'y', '1'): |
|
return True |
|
elif v.lower() in ('no', 'false', 'f', 'n', '0'): |
|
return False |
|
else: |
|
assert False |
|
|
|
def freeze_model(model): |
|
for param in model.parameters(): |
|
param.requires_grad=False |
|
|
|
def switching_model(model, updating_param): |
|
if updating_param == 'all': |
|
for name, param in model.named_parameters(): |
|
param.requires_grad=True |
|
return |
|
|
|
for name, param in model.named_parameters(): |
|
if 'float' in str(param.dtype): |
|
if sum([up_param in name for up_param in updating_param]): |
|
param.requires_grad=True |
|
else: |
|
param.requires_grad=False |
|
|
|
def weight_upload(tensor_dict, model): |
|
used_name = [] |
|
for name, param in tensor_dict.items(): |
|
split_name = name.split('.') |
|
|
|
traversal = model |
|
for module_name in split_name: |
|
traversal = getattr(traversal, module_name) |
|
|
|
|
|
setattr(traversal, 'data', param.to(traversal.device)) |
|
used_name.append(name) |
|
|
|
for name in used_name: |
|
del tensor_dict[name] |
|
|
|
def find_special_token(string, special_token): |
|
start = 0 |
|
while True: |
|
start = string.find(special_token, start) |
|
if start == -1: return |
|
yield start |
|
start += len(special_token) |
|
|
|
def add_bundle_tokens(input_string, special_token, num): |
|
|
|
|
|
num_special_tokens = len(list(find_special_token(input_string, special_token))) |
|
|
|
|
|
if not num_special_tokens: |
|
return input_string |
|
|
|
result = "" |
|
index = 0 |
|
while index < len(input_string): |
|
if input_string[index:index + len(special_token)] == special_token: |
|
result += special_token * num |
|
index += len(special_token) |
|
else: |
|
result += input_string[index] |
|
index += 1 |
|
|
|
assert len(list(find_special_token(result, special_token))) == num_special_tokens * num |
|
return result |
|
|
|
def make_instruction(question, dataset, prompt_rule): |
|
system_prompt = make_human_string("You are AI model created by Byung-Kwan Lee, Ph.D. candidate, KAIST EE, of which AI model name is TroL (Traversal of Layers).", |
|
"You must give helpful, detailed, and polite answers to the user's questions", |
|
split=' ') |
|
|
|
if dataset != "mmmu" and dataset != "mathverse" and dataset != "hallusionbench" and dataset != "demo": |
|
question = "<image>" + question |
|
|
|
if dataset in ["sqa", "mmbench", "mmbench_cn", "mmbench_dev", "mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar"]: |
|
question = question + "\nAnswer with the option's letter from the given choices directly." |
|
|
|
elif dataset in ["vqav2", "gqa", "pope", "chartqa"]: |
|
question = question + "\nAnswer the question using a single word or phrase." |
|
|
|
elif dataset in ["vizwiz"]: |
|
question = question + "\nWhen the provided information is insufficient, respond with 'Unanswerable'. Answer the question using a single word or phrase." |
|
|
|
elif dataset in ["mmmu"]: |
|
if "A." in question: |
|
question = question + "\nAnswer with the option's letter from the given choices directly." |
|
else: |
|
question = question + "\nAnswer the question using a single word or phrase." |
|
|
|
elif dataset in ["hallusionbench"]: |
|
if "Please answer yes or no." not in question: |
|
question = question + "\nPlease answer yes or no." |
|
|
|
qa_prompt = make_human_string(prompt_rule["system_start"]+system_prompt+prompt_rule["system_end"], |
|
prompt_rule["user_start"]+question+prompt_rule["user_end"], |
|
prompt_rule["assistant_start"], |
|
split=prompt_rule["split"]) |
|
|
|
return qa_prompt |
|
|
|
def make_human_string(*args, split): |
|
out = '' |
|
for i, arg in enumerate(args): |
|
out += arg |
|
if i != len(args)-1: |
|
out += split |
|
return out |
|
|
|
def get_max_new_tokens(data_name): |
|
if data_name.lower() in ["mme", "pope", "sqa", "mmbench", "mmbench_cn", "mmbench_dev","mmbench_cn_dev", "seed", "qbench", "ai2d", "mmstar", "vqav2", "gqa", "chartqa", "hallusionbench", "textvqa", "mmmu"]: |
|
return 5 |
|
if data_name.lower() in ["llava", "mm-vet"]: |
|
return 1024 |
|
else: |
|
return 512 |
|
|
|
def pixel_shuffle(x, scale_factor=0.5): |
|
n, w, h, c = x.size() |
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
int(c / (scale_factor * scale_factor))) |
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
return x |
|
|
|
import torchvision.transforms as T |
|
from torchvision.transforms.functional import InterpolationMode |
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
dynamic_transform = build_transform(input_size=448) |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=True): |
|
from torchvision.transforms.functional import to_pil_image |
|
image = to_pil_image(image) |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
|
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |