BK-Lee commited on
Commit
dd4cd4b
·
1 Parent(s): 89a5124
.vscode/launch.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ // Use IntelliSense to learn about possible attributes.
3
+ // Hover to view descriptions of existing attributes.
4
+ // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
5
+ "version": "0.2.0",
6
+ "configurations": [
7
+ {
8
+ "name": "Python Debugger: Current File",
9
+ "type": "debugpy",
10
+ "request": "launch",
11
+ "program": "${file}",
12
+ "console": "integratedTerminal"
13
+ }
14
+ ]
15
+ }
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
  title: Phantom
3
- emoji: 🦀
4
- colorFrom: indigo
5
- colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.44.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
1
  ---
2
  title: Phantom
3
+ emoji: ⛰️
4
+ colorFrom: yellow
5
+ colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.36.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
app.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A100 Zero GPU
2
+ import spaces
3
+
4
+ # flash attention
5
+ import subprocess
6
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
7
+
8
+ # Phantom Package
9
+ import torch
10
+ from PIL import Image
11
+ from utils.utils import *
12
+ import torch.nn.functional as F
13
+ from model.load_model import load_model
14
+ from torchvision.transforms.functional import pil_to_tensor
15
+
16
+ # Gradio Package
17
+ import time
18
+ import gradio as gr
19
+ from threading import Thread
20
+ from accelerate import Accelerator
21
+ from transformers import TextIteratorStreamer
22
+ from torchvision.transforms.functional import pil_to_tensor
23
+
24
+ # accel
25
+ accel = Accelerator()
26
+
27
+ # loading model
28
+ model_1_8, tokenizer_1_8 = load_model(size='1.8b')
29
+
30
+ # loading model
31
+ model_3_8, tokenizer_3_8 = load_model(size='3.8b')
32
+
33
+ # loading model
34
+ model_7, tokenizer_7 = load_model(size='7b')
35
+
36
+ def threading_function(inputs, streamer, device, model, tokenizer, temperature, new_max_token, top_p):
37
+
38
+ # propagation
39
+ _inputs = model.eval_process(inputs=inputs,
40
+ data='demo',
41
+ tokenizer=tokenizer,
42
+ device=device)
43
+ generation_kwargs = _inputs
44
+ generation_kwargs.update({'streamer': streamer})
45
+ generation_kwargs.update({'do_sample': True})
46
+ generation_kwargs.update({'max_new_tokens': new_max_token})
47
+ generation_kwargs.update({'top_p': top_p})
48
+ generation_kwargs.update({'temperature': temperature})
49
+ generation_kwargs.update({'use_cache': True})
50
+ return model.generate(**generation_kwargs)
51
+
52
+ # @spaces.GPU
53
+ def bot_streaming(message, history, link, temperature, new_max_token, top_p):
54
+
55
+ # model selection
56
+ if "1.8B" in link:
57
+ model = model_1_8
58
+ tokenizer = tokenizer_1_8
59
+ elif "3.8B" in link:
60
+ model = model_3_8
61
+ tokenizer = tokenizer_3_8
62
+ elif "7B" in link:
63
+ model = model_7
64
+ tokenizer = tokenizer_7
65
+
66
+ # X -> float16 conversion
67
+ for param in model.parameters():
68
+ if 'float32' in str(param.dtype).lower() or 'float16' in str(param.dtype).lower():
69
+ param.data = param.data.to(torch.bfloat16)
70
+
71
+ # cpu -> gpu
72
+ for param in model.parameters():
73
+ if not param.is_cuda:
74
+ param.data = param.to(accel.device)
75
+
76
+ try:
77
+ # prompt type -> input prompt
78
+ if len(message['files']) == 1:
79
+ # Image Load
80
+ image = pil_to_tensor(Image.open(message['files'][0]).convert("RGB"))
81
+ inputs = [{'image': image.to(accel.device), 'question': message['text']}]
82
+ elif len(message['files']) > 1:
83
+ raise Exception("No way!")
84
+ else:
85
+ inputs = [{'question': message['text']}]
86
+
87
+ # Text Generation
88
+ with torch.inference_mode():
89
+ # kwargs
90
+ streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
91
+
92
+ # Threading generation
93
+ thread = Thread(target=threading_function, kwargs=dict(inputs=inputs,
94
+ streamer=streamer,
95
+ model=model,
96
+ tokenizer=tokenizer,
97
+ device=accel.device,
98
+ temperature=temperature,
99
+ new_max_token=new_max_token,
100
+ top_p=top_p))
101
+ thread.start()
102
+
103
+ # generated text
104
+ generated_text = ""
105
+ for new_text in streamer:
106
+ generated_text += new_text
107
+ generated_text
108
+
109
+ # Text decoding
110
+ response = output_filtering(generated_text, model)
111
+
112
+ except:
113
+ response = "There may be unsupported format: ex) pdf, video, sound. Only supported is a single image in this version."
114
+
115
+ # private log print
116
+ text = message['text']
117
+ files = message['files']
118
+ print('-----------------------------')
119
+ print(f'Link: {link}')
120
+ print(f'Text: {text}')
121
+ print(f'MM Files: {files}')
122
+ print(f'Response: {response}')
123
+ print('-----------------------------\n')
124
+
125
+
126
+ buffer = ""
127
+ for character in response:
128
+ buffer += character
129
+ time.sleep(0.012)
130
+ yield buffer
131
+
132
+ demo = gr.ChatInterface(fn=bot_streaming,
133
+ additional_inputs = [gr.Radio(["1.8B", "3.8B", "7B"], label="Size", info="Select one model size", value="7B"), gr.Slider(0, 1, 0.9, label="temperature"), gr.Slider(1, 1024, 128, label="new_max_token"), gr.Slider(0, 1, 0.95, label="top_p")],
134
+ additional_inputs_accordion="Generation Hyperparameters",
135
+ theme=gr.themes.Soft(),
136
+ title="Phantom",
137
+ description="Phantom is super efficient 0.5B, 1.8B, 3.8B, and 7B size Large Language and Vision Models built on new propagation strategy. "
138
+ "Its inference speed highly depends on assinging non-scheduled GPU. (Therefore, once all GPUs are busy, then inference may be taken in infinity) "
139
+ "Note that, we don't support history-based conversation referring to previous dialogue",
140
+ stop_btn="Stop Generation", multimodal=True)
141
+ demo.launch()
config.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Checkpoints & Dataset root
2
+ MODEL_7B="BK-Lee/Phantom-7B"
3
+ MODEL_3_8B="BK-Lee/Phantom-3.8B"
4
+ MODEL_1_8B="BK-Lee/Phantom-1.8B"
5
+ MODEL_0_5B="BK-Lee/Phantom-0.5B"
model/arch_0_5b/configuration_intern_vit.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Union
3
+
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class InternVisionConfig(PretrainedConfig):
11
+ r"""
12
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
13
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
14
+
15
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
16
+ documentation from [`PretrainedConfig`] for more information.
17
+
18
+ Args:
19
+ num_channels (`int`, *optional*, defaults to 3):
20
+ Number of color channels in the input images (e.g., 3 for RGB).
21
+ patch_size (`int`, *optional*, defaults to 14):
22
+ The size (resolution) of each patch.
23
+ image_size (`int`, *optional*, defaults to 224):
24
+ The size (resolution) of each image.
25
+ qkv_bias (`bool`, *optional*, defaults to `False`):
26
+ Whether to add a bias to the queries and values in the self-attention layers.
27
+ hidden_size (`int`, *optional*, defaults to 3200):
28
+ Dimensionality of the encoder layers and the pooler layer.
29
+ num_attention_heads (`int`, *optional*, defaults to 25):
30
+ Number of attention heads for each attention layer in the Transformer encoder.
31
+ intermediate_size (`int`, *optional*, defaults to 12800):
32
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
33
+ qk_normalization (`bool`, *optional*, defaults to `True`):
34
+ Whether to normalize the queries and keys in the self-attention layers.
35
+ num_hidden_layers (`int`, *optional*, defaults to 48):
36
+ Number of hidden layers in the Transformer encoder.
37
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
38
+ Whether to use flash attention mechanism.
39
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
40
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
41
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
42
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
43
+ The epsilon used by the layer normalization layers.
44
+ dropout (`float`, *optional*, defaults to 0.0):
45
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
46
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
47
+ Dropout rate for stochastic depth.
48
+ attention_dropout (`float`, *optional*, defaults to 0.0):
49
+ The dropout ratio for the attention probabilities.
50
+ initializer_range (`float`, *optional*, defaults to 0.02):
51
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
52
+ initializer_factor (`float`, *optional*, defaults to 0.1):
53
+ A factor for layer scale.
54
+ """
55
+
56
+ model_type = 'intern_vit_300m'
57
+
58
+ def __init__(
59
+ self,
60
+ num_channels=3,
61
+ patch_size=14,
62
+ image_size=224,
63
+ qkv_bias=False,
64
+ hidden_size=3200,
65
+ num_attention_heads=25,
66
+ intermediate_size=12800,
67
+ qk_normalization=True,
68
+ num_hidden_layers=48,
69
+ use_flash_attn=True,
70
+ hidden_act='gelu',
71
+ norm_type='rms_norm',
72
+ layer_norm_eps=1e-6,
73
+ dropout=0.0,
74
+ drop_path_rate=0.0,
75
+ attention_dropout=0.0,
76
+ initializer_range=0.02,
77
+ initializer_factor=0.1,
78
+ **kwargs,
79
+ ):
80
+ super().__init__(**kwargs)
81
+
82
+ self.hidden_size = hidden_size
83
+ self.intermediate_size = intermediate_size
84
+ self.dropout = dropout
85
+ self.drop_path_rate = drop_path_rate
86
+ self.num_hidden_layers = num_hidden_layers
87
+ self.num_attention_heads = num_attention_heads
88
+ self.num_channels = num_channels
89
+ self.patch_size = patch_size
90
+ self.image_size = image_size
91
+ self.initializer_range = initializer_range
92
+ self.initializer_factor = initializer_factor
93
+ self.attention_dropout = attention_dropout
94
+ self.layer_norm_eps = layer_norm_eps
95
+ self.hidden_act = hidden_act
96
+ self.norm_type = norm_type
97
+ self.qkv_bias = qkv_bias
98
+ self.qk_normalization = qk_normalization
99
+ self.use_flash_attn = use_flash_attn
100
+
101
+ @classmethod
102
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
103
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
104
+
105
+ if 'vision_config' in config_dict:
106
+ config_dict = config_dict['vision_config']
107
+
108
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
109
+ logger.warning(
110
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
111
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
112
+ )
113
+
114
+ return cls.from_dict(config_dict, **kwargs)
model/arch_0_5b/configuration_phantom.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from transformers import LlamaConfig, Qwen2Config
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ from .configuration_intern_vit import InternVisionConfig
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+
12
+ class PhantomConfig(PretrainedConfig):
13
+ model_type = 'phantom'
14
+ is_composition = True
15
+
16
+ def __init__(
17
+ self,
18
+ vision_config=None,
19
+ llm_config=None,
20
+ use_backbone_lora=0,
21
+ use_llm_lora=0,
22
+ force_image_size=None,
23
+ downsample_ratio=0.5,
24
+ template=None,
25
+ dynamic_image_size=False,
26
+ use_thumbnail=False,
27
+ min_dynamic_patch=1,
28
+ max_dynamic_patch=6,
29
+ **kwargs):
30
+ super().__init__(**kwargs)
31
+
32
+ if vision_config is None:
33
+ vision_config = {}
34
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
35
+
36
+ if llm_config is None:
37
+ llm_config = {}
38
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
39
+
40
+ self.vision_config = InternVisionConfig(**vision_config)
41
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
42
+ self.llm_config = LlamaConfig(**llm_config)
43
+ elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
44
+ self.llm_config = Qwen2Config(**llm_config)
45
+ else:
46
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
47
+ self.use_backbone_lora = use_backbone_lora
48
+ self.use_llm_lora = use_llm_lora
49
+ self.force_image_size = force_image_size
50
+ self.downsample_ratio = downsample_ratio
51
+ self.template = template
52
+ self.dynamic_image_size = dynamic_image_size
53
+ self.use_thumbnail = use_thumbnail
54
+ self.min_dynamic_patch = min_dynamic_patch
55
+ self.max_dynamic_patch = max_dynamic_patch
56
+
57
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
58
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
59
+
60
+ def to_dict(self):
61
+ """
62
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
63
+
64
+ Returns:
65
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
66
+ """
67
+ output = copy.deepcopy(self.__dict__)
68
+ output['vision_config'] = self.vision_config.to_dict()
69
+ output['llm_config'] = self.llm_config.to_dict()
70
+ output['model_type'] = self.__class__.model_type
71
+ output['use_backbone_lora'] = self.use_backbone_lora
72
+ output['use_llm_lora'] = self.use_llm_lora
73
+ output['force_image_size'] = self.force_image_size
74
+ output['downsample_ratio'] = self.downsample_ratio
75
+ output['template'] = self.template
76
+ output['dynamic_image_size'] = self.dynamic_image_size
77
+ output['use_thumbnail'] = self.use_thumbnail
78
+ output['min_dynamic_patch'] = self.min_dynamic_patch
79
+ output['max_dynamic_patch'] = self.max_dynamic_patch
80
+
81
+ return output
model/arch_0_5b/modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ import torch.utils.checkpoint
6
+ from einops import rearrange
7
+ from timm.models.layers import DropPath
8
+ from torch import nn
9
+ from transformers.activations import ACT2FN
10
+ from transformers.modeling_outputs import (BaseModelOutput,
11
+ BaseModelOutputWithPooling)
12
+ from transformers.modeling_utils import PreTrainedModel
13
+ from transformers.utils import logging
14
+
15
+ from .configuration_intern_vit import InternVisionConfig
16
+
17
+ try:
18
+ try: # v1
19
+ from flash_attn.flash_attn_interface import \
20
+ flash_attn_unpadded_qkvpacked_func
21
+ except: # v2
22
+ from flash_attn.flash_attn_interface import \
23
+ flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
24
+
25
+ from flash_attn.bert_padding import pad_input, unpad_input
26
+
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_unpadded_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_unpadded_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = False
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
model/arch_0_5b/modeling_phantom.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch.utils.checkpoint
4
+ from torch import nn
5
+ from transformers import GenerationConfig
6
+ from transformers.modeling_outputs import CausalLMOutputWithPast
7
+ from transformers.modeling_utils import PreTrainedModel
8
+
9
+ from .configuration_phantom import PhantomConfig
10
+ from .modeling_intern_vit import InternVisionModel
11
+
12
+ from utils.utils import *
13
+ from model.arch_0_5b.modeling_qwen2 import Qwen2ForCausalLM
14
+
15
+ class PhantomForCausalLM(PreTrainedModel):
16
+ config_class = PhantomConfig
17
+ main_input_name = 'pixel_values'
18
+ _supports_flash_attn_2 = True
19
+ _no_split_modules = ['InternVisionModel', 'Qwen2DecoderLayer']
20
+
21
+ def __init__(self, config: PhantomConfig):
22
+ super().__init__(config)
23
+ image_size = config.force_image_size or config.vision_config.image_size
24
+ patch_size = config.vision_config.patch_size
25
+ self.patch_size = patch_size
26
+ self.template = config.template
27
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
28
+ self.downsample_ratio = config.downsample_ratio
29
+
30
+ self.vision_model = InternVisionModel(config.vision_config)
31
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
32
+
33
+ vit_hidden_size = config.vision_config.hidden_size
34
+ llm_hidden_size = config.llm_config.hidden_size
35
+
36
+ self.vision_proj = nn.Sequential(
37
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
38
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
39
+ nn.GELU(),
40
+ nn.Linear(llm_hidden_size, llm_hidden_size)
41
+ )
42
+
43
+ # prompt rule
44
+ self.prompt_rule = {
45
+ "system_start": "<|im_start|>system\n",
46
+ "system_end": "<|im_end|>",
47
+ "user_start": "<|im_start|>user\n",
48
+ "user_end": "<|im_end|>",
49
+ "assistant_start": "<|im_start|>assistant\n",
50
+ "assistant_end": "<|im_end|>",
51
+ "test_start": "assistant\n",
52
+ "test_end": "<|im_end|>",
53
+ "split": "",
54
+ }
55
+
56
+ def eval_process(
57
+ self,
58
+ inputs,
59
+ tokenizer,
60
+ data,
61
+ device,
62
+ ):
63
+ batched_image=[]
64
+ batched_qa_prompt=[]
65
+ batched_phantom_position = []
66
+ for _input in inputs:
67
+
68
+ # making image prompt
69
+ if 'image' in _input.keys() and _input['image'] != None:
70
+ process_image = dynamic_preprocess(_input['image'].to(device))
71
+ dynamic_process_image = torch.stack([dynamic_transform(image) for image in process_image]).to(device)
72
+ img_token_number = dynamic_process_image.shape[0] * 256
73
+ batched_image.append(dynamic_process_image)
74
+
75
+ # make question and answer
76
+ question = _input['question']
77
+
78
+ # make instruction (qa pair) and label
79
+ qa_prompt = make_instruction(question, data, self.prompt_rule)
80
+
81
+ # adding image special tokens to question
82
+ if 'image' in _input.keys():
83
+ qa_prompt = qa_prompt.replace('<image>', '<img><IMG_CONTEXT></img>')
84
+
85
+ # add bundle image tokens if it has <image> token
86
+ qa_prompt = add_bundle_tokens(qa_prompt, '<IMG_CONTEXT>', img_token_number)
87
+
88
+ # phantom_position
89
+ label = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].to(device)
90
+ phantom_position = torch.zeros_like(label)
91
+ phantom_position[0] = 1
92
+
93
+ # batched processing
94
+ batched_qa_prompt.append(qa_prompt)
95
+ batched_phantom_position.append(phantom_position.flip(dims=[0]))
96
+
97
+ '''For Final Outputs'''
98
+ qa_prompts = tokenizer(batched_qa_prompt, padding='longest', return_tensors="pt", add_special_tokens=False)
99
+
100
+ # [1] input_ids
101
+ input_ids = qa_prompts.input_ids.to(device)
102
+
103
+ # [2] attention_mask
104
+ attention_mask = qa_prompts.attention_mask.to(device)
105
+
106
+ # [3] Phantom Position
107
+ batched_phantom_position = torch.nn.utils.rnn.pad_sequence(batched_phantom_position, batch_first=True, padding_value=0).flip(dims=[1]) # padding left
108
+
109
+ if len(batched_image):
110
+ return {"input_ids": input_ids,
111
+ "attention_mask": attention_mask,
112
+ "pixel_values": torch.cat(batched_image, dim=0).to(device),
113
+ "phantom_position": batched_phantom_position.bool()
114
+ }
115
+ else:
116
+ return {"input_ids": input_ids,
117
+ "attention_mask": attention_mask,
118
+ "phantom_position": batched_phantom_position.bool()
119
+ }
120
+
121
+ def extract_feature(self, pixel_values):
122
+ vit_embeds = self.vision_model(
123
+ pixel_values=pixel_values,
124
+ output_hidden_states=False,
125
+ return_dict=True).last_hidden_state
126
+ vit_embeds = vit_embeds[:, 1:, :]
127
+
128
+ h = w = int(vit_embeds.shape[1] ** 0.5)
129
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
130
+ vit_embeds = pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
131
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
132
+ vit_embeds = self.vision_proj(vit_embeds)
133
+ return vit_embeds
134
+
135
+ @torch.no_grad()
136
+ def generate(
137
+ self,
138
+ pixel_values: Optional[torch.FloatTensor] = None,
139
+ input_ids: Optional[torch.FloatTensor] = None,
140
+ attention_mask: Optional[torch.LongTensor] = None,
141
+ phantom_position: torch.BoolTensor = None,
142
+ generation_config: Optional[GenerationConfig] = None,
143
+ output_hidden_states: Optional[bool] = None,
144
+ return_dict: Optional[bool] = None,
145
+ **generate_kwargs,
146
+ ) -> torch.LongTensor:
147
+
148
+ if pixel_values is not None:
149
+ vit_embeds = self.extract_feature(pixel_values.to(torch.bfloat16))
150
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
151
+ B, N, C = input_embeds.shape
152
+ input_embeds = input_embeds.reshape(B * N, C)
153
+
154
+ input_ids = input_ids.reshape(B * N)
155
+ selected = (input_ids == self.config.image_token_index)
156
+ assert selected.sum() != 0
157
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
158
+
159
+ input_embeds = input_embeds.reshape(B, N, C)
160
+ else:
161
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
162
+
163
+ outputs = self.language_model.generate(
164
+ inputs_embeds=input_embeds,
165
+ attention_mask=attention_mask,
166
+ phantom_position=phantom_position,
167
+ generation_config=generation_config,
168
+ output_hidden_states=output_hidden_states,
169
+ return_dict=return_dict,
170
+ use_cache=True,
171
+ pad_token_id=self.config.eos_token_id,
172
+ eos_token_id=self.config.eos_token_id,
173
+ **generate_kwargs,
174
+ )
175
+
176
+ return outputs
model/arch_0_5b/modeling_qwen2.py ADDED
@@ -0,0 +1,1688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch Qwen2 model."""
21
+
22
+ import inspect
23
+ import math
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
34
+ from transformers.modeling_attn_mask_utils import (
35
+ AttentionMaskConverter,
36
+ )
37
+ from transformers.modeling_outputs import (
38
+ BaseModelOutputWithPast,
39
+ CausalLMOutputWithPast,
40
+ SequenceClassifierOutputWithPast,
41
+ TokenClassifierOutput,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.utils import (
45
+ add_start_docstrings,
46
+ add_start_docstrings_to_model_forward,
47
+ is_flash_attn_2_available,
48
+ is_flash_attn_greater_or_equal_2_10,
49
+ logging,
50
+ replace_return_docstrings,
51
+ )
52
+ from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
53
+
54
+ # Phantom
55
+ from utils.utils import *
56
+
57
+ if is_flash_attn_2_available():
58
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
59
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
60
+
61
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
62
+
63
+
64
+ logger = logging.get_logger(__name__)
65
+
66
+
67
+ _CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
68
+ _CONFIG_FOR_DOC = "Qwen2Config"
69
+
70
+
71
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
72
+ def _get_unpad_data(attention_mask):
73
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
74
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
75
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
76
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
77
+ return (
78
+ indices,
79
+ cu_seqlens,
80
+ max_seqlen_in_batch,
81
+ )
82
+
83
+
84
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
85
+ class Qwen2RMSNorm(nn.Module):
86
+ def __init__(self, hidden_size, eps=1e-6):
87
+ """
88
+ Qwen2RMSNorm is equivalent to T5LayerNorm
89
+ """
90
+ super().__init__()
91
+ self.weight = nn.Parameter(torch.ones(hidden_size))
92
+ self.variance_epsilon = eps
93
+
94
+ def forward(self, hidden_states):
95
+ input_dtype = hidden_states.dtype
96
+ hidden_states = hidden_states.to(torch.float32)
97
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
98
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
99
+ return self.weight * hidden_states.to(input_dtype)
100
+
101
+
102
+ # Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
103
+ class Qwen2RotaryEmbedding(nn.Module):
104
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
105
+ super().__init__()
106
+
107
+ self.dim = dim
108
+ self.max_position_embeddings = max_position_embeddings
109
+ self.base = base
110
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
111
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
112
+
113
+ # Build here to make `torch.jit.trace` work.
114
+ self._set_cos_sin_cache(
115
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
116
+ )
117
+
118
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
119
+ self.max_seq_len_cached = seq_len
120
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
121
+
122
+ freqs = torch.outer(t, self.inv_freq)
123
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
124
+ emb = torch.cat((freqs, freqs), dim=-1)
125
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
126
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
127
+
128
+ def forward(self, x, seq_len=None):
129
+ # x: [bs, num_attention_heads, seq_len, head_size]
130
+ if seq_len > self.max_seq_len_cached:
131
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
132
+
133
+ return (
134
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
135
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
136
+ )
137
+
138
+
139
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
140
+ def rotate_half(x):
141
+ """Rotates half the hidden dims of the input."""
142
+ x1 = x[..., : x.shape[-1] // 2]
143
+ x2 = x[..., x.shape[-1] // 2 :]
144
+ return torch.cat((-x2, x1), dim=-1)
145
+
146
+
147
+ # Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb
148
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
149
+ """Applies Rotary Position Embedding to the query and key tensors.
150
+
151
+ Args:
152
+ q (`torch.Tensor`): The query tensor.
153
+ k (`torch.Tensor`): The key tensor.
154
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
155
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
156
+ position_ids (`torch.Tensor`):
157
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
158
+ used to pass offsetted position ids when working with a KV-cache.
159
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
160
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
161
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
162
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
163
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
164
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
165
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
166
+ Returns:
167
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
168
+ """
169
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
170
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
171
+ q_embed = (q * cos) + (rotate_half(q) * sin)
172
+ k_embed = (k * cos) + (rotate_half(k) * sin)
173
+ return q_embed, k_embed
174
+
175
+
176
+ # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
177
+ class Qwen2MLP(nn.Module):
178
+ def __init__(self, config):
179
+ super().__init__()
180
+ self.hidden_size = config.hidden_size
181
+ self.intermediate_size = config.intermediate_size
182
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
183
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
184
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
185
+ self.act_fn = ACT2FN[config.hidden_act]
186
+
187
+ def forward(self, hidden_state):
188
+ return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
189
+
190
+
191
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
192
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
193
+ """
194
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
195
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
196
+ """
197
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
198
+ if n_rep == 1:
199
+ return hidden_states
200
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
201
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
202
+
203
+
204
+ class Qwen2Attention(nn.Module):
205
+ """
206
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
207
+ and "Generating Long Sequences with Sparse Transformers".
208
+ """
209
+
210
+ def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
211
+ super().__init__()
212
+ self.config = config
213
+ self.layer_idx = layer_idx
214
+ if layer_idx is None:
215
+ logger.warning_once(
216
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
217
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
218
+ "when creating this class."
219
+ )
220
+
221
+ self.hidden_size = config.hidden_size
222
+ self.num_heads = config.num_attention_heads
223
+ self.head_dim = self.hidden_size // self.num_heads
224
+ self.num_key_value_heads = config.num_key_value_heads
225
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
226
+ self.max_position_embeddings = config.max_position_embeddings
227
+ self.rope_theta = config.rope_theta
228
+ self.is_causal = True
229
+ self.attention_dropout = config.attention_dropout
230
+
231
+ if (self.head_dim * self.num_heads) != self.hidden_size:
232
+ raise ValueError(
233
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
234
+ f" and `num_heads`: {self.num_heads})."
235
+ )
236
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
237
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
238
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
239
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
240
+
241
+ self.rotary_emb = Qwen2RotaryEmbedding(
242
+ self.head_dim,
243
+ max_position_embeddings=self.max_position_embeddings,
244
+ base=self.rope_theta,
245
+ )
246
+
247
+ """
248
+ Phantom
249
+ """
250
+ # Phantom Init
251
+ self.turn_on_phantom = True
252
+ self.xattn_query_phantom = XAttention(self.head_dim)
253
+ self.xattn_key_phantom = XAttention(self.head_dim)
254
+ self.xattn_value_phantom = XAttention(self.head_dim)
255
+ self.gating_phantom_1 = nn.Linear(self.head_dim, 1)
256
+ self.gating_phantom_2 = nn.Linear(self.head_dim, 1)
257
+
258
+
259
+ def forward(
260
+ self,
261
+ hidden_states: torch.Tensor,
262
+ attention_mask: Optional[torch.Tensor] = None,
263
+ position_ids: Optional[torch.LongTensor] = None,
264
+ past_key_value: Optional[Cache] = None,
265
+ output_attentions: bool = False,
266
+ use_cache: bool = False,
267
+ cache_position: Optional[torch.LongTensor] = None,
268
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
269
+ bsz, q_len, _ = hidden_states.size()
270
+
271
+ query_states = self.q_proj(hidden_states)
272
+ key_states = self.k_proj(hidden_states)
273
+ value_states = self.v_proj(hidden_states)
274
+
275
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
276
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
277
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
278
+
279
+ kv_seq_len = key_states.shape[-2]
280
+ if past_key_value is not None:
281
+ if self.layer_idx is None:
282
+ raise ValueError(
283
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
284
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
285
+ "with a layer index."
286
+ )
287
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
288
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
289
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
290
+
291
+ if past_key_value is not None:
292
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
293
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
294
+
295
+ # repeat k/v heads if n_kv_heads < n_heads
296
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
297
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
298
+
299
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
300
+
301
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
302
+ raise ValueError(
303
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
304
+ f" {attn_weights.size()}"
305
+ )
306
+
307
+ if attention_mask is not None: # no matter the length, we just slice it
308
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
309
+ attn_weights = attn_weights + causal_mask
310
+
311
+ # upcast attention to fp32
312
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
313
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
314
+ attn_output = torch.matmul(attn_weights, value_states)
315
+
316
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
317
+ raise ValueError(
318
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
319
+ f" {attn_output.size()}"
320
+ )
321
+
322
+ attn_output = attn_output.transpose(1, 2).contiguous()
323
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
324
+
325
+ attn_output = self.o_proj(attn_output)
326
+
327
+ if not output_attentions:
328
+ attn_weights = None
329
+
330
+ return attn_output, attn_weights, past_key_value
331
+
332
+
333
+ class Qwen2FlashAttention2(Qwen2Attention):
334
+ """
335
+ Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
336
+ as the weights of the module stays untouched. The only required change would be on the forward pass
337
+ where it needs to correctly call the public API of flash attention and deal with padding tokens
338
+ in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
339
+ config.max_window_layers layers.
340
+ """
341
+
342
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
343
+ def __init__(self, *args, **kwargs):
344
+ super().__init__(*args, **kwargs)
345
+
346
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
347
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
348
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
349
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
350
+
351
+ def forward(
352
+ self,
353
+ hidden_states: torch.Tensor,
354
+ attention_mask: Optional[torch.Tensor] = None,
355
+ position_ids: Optional[torch.LongTensor] = None,
356
+ past_key_value: Optional[Cache] = None,
357
+ phantom_position: torch.BoolTensor = None,
358
+ output_attentions: bool = False,
359
+ use_cache: bool = False,
360
+ cache_position: Optional[torch.LongTensor] = None,
361
+ ):
362
+ bsz, q_len, _ = hidden_states.size()
363
+
364
+ query_states = self.q_proj(hidden_states)
365
+ key_states = self.k_proj(hidden_states)
366
+ value_states = self.v_proj(hidden_states)
367
+
368
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
369
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
370
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
371
+
372
+ kv_seq_len = key_states.shape[-2]
373
+ if past_key_value is not None:
374
+ if self.layer_idx is None:
375
+ raise ValueError(
376
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
377
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
378
+ "with a layer index."
379
+ )
380
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
381
+
382
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
383
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
384
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
385
+
386
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
387
+
388
+ use_sliding_windows = (
389
+ _flash_supports_window_size
390
+ and getattr(self.config, "sliding_window", None) is not None
391
+ and kv_seq_len > self.config.sliding_window
392
+ and self.config.use_sliding_window
393
+ )
394
+
395
+ if not _flash_supports_window_size:
396
+ logger.warning_once(
397
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
398
+ " make sure to upgrade flash-attn library."
399
+ )
400
+
401
+ if past_key_value is not None:
402
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
403
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
404
+ if (
405
+ getattr(self.config, "sliding_window", None) is not None
406
+ and kv_seq_len > self.config.sliding_window
407
+ and cache_has_contents
408
+ ):
409
+ slicing_tokens = 1 - self.config.sliding_window
410
+
411
+ past_key = past_key_value[self.layer_idx][0]
412
+ past_value = past_key_value[self.layer_idx][1]
413
+
414
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
415
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
416
+
417
+ if past_key.shape[-2] != self.config.sliding_window - 1:
418
+ raise ValueError(
419
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
420
+ f" {past_key.shape}"
421
+ )
422
+
423
+ if attention_mask is not None:
424
+ attention_mask = attention_mask[:, slicing_tokens:]
425
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
426
+
427
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
428
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
429
+
430
+ # repeat k/v heads if n_kv_heads < n_heads
431
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
432
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
433
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
434
+
435
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
436
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
437
+ # cast them back in float16 just to be sure everything works as expected.
438
+ input_dtype = query_states.dtype
439
+ if input_dtype == torch.float32:
440
+ if torch.is_autocast_enabled():
441
+ target_dtype = torch.get_autocast_gpu_dtype()
442
+ # Handle the case where the model is quantized
443
+ elif hasattr(self.config, "_pre_quantization_dtype"):
444
+ target_dtype = self.config._pre_quantization_dtype
445
+ else:
446
+ target_dtype = self.q_proj.weight.dtype
447
+
448
+ logger.warning_once(
449
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
450
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
451
+ f" {target_dtype}."
452
+ )
453
+
454
+ query_states = query_states.to(target_dtype)
455
+ key_states = key_states.to(target_dtype)
456
+ value_states = value_states.to(target_dtype)
457
+
458
+ # Reashape to the expected shape for Flash Attention
459
+ query_states = query_states.transpose(1, 2)
460
+ key_states = key_states.transpose(1, 2)
461
+ value_states = value_states.transpose(1, 2)
462
+
463
+ attn_output = self._flash_attention_forward(
464
+ query_states,
465
+ key_states,
466
+ value_states,
467
+ attention_mask,
468
+ q_len,
469
+ phantom_position,
470
+ dropout=dropout_rate,
471
+ use_sliding_windows=use_sliding_windows,
472
+ )
473
+
474
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
475
+ attn_output = self.o_proj(attn_output)
476
+
477
+ if not output_attentions:
478
+ attn_weights = None
479
+
480
+ return attn_output, attn_weights, past_key_value
481
+
482
+ def _flash_attention_forward(
483
+ self,
484
+ query_states,
485
+ key_states,
486
+ value_states,
487
+ attention_mask,
488
+ query_length,
489
+ phantom_position,
490
+ dropout=0.0,
491
+ softmax_scale=None,
492
+ use_sliding_windows=False,
493
+ ):
494
+ """
495
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
496
+ first unpad the input, then computes the attention scores and pad the final attention scores.
497
+
498
+ Args:
499
+ query_states (`torch.Tensor`):
500
+ Input query states to be passed to Flash Attention API
501
+ key_states (`torch.Tensor`):
502
+ Input key states to be passed to Flash Attention API
503
+ value_states (`torch.Tensor`):
504
+ Input value states to be passed to Flash Attention API
505
+ attention_mask (`torch.Tensor`):
506
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
507
+ position of padding tokens and 1 for the position of non-padding tokens.
508
+ dropout (`float`):
509
+ Attention dropout
510
+ softmax_scale (`float`, *optional*):
511
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
512
+ use_sliding_windows (`bool`, *optional*):
513
+ Whether to activate sliding window attention.
514
+ """
515
+
516
+ """
517
+ Phantom
518
+ """
519
+ if self.turn_on_phantom:
520
+
521
+ # [Important] softmax_scale
522
+ softmax_scale = 1 / math.sqrt(query_states.shape[-1])
523
+
524
+ query_states_phantom = []
525
+ key_states_phantom = []
526
+ value_states_phantom = []
527
+ for index, pos in enumerate(phantom_position):
528
+ if query_states.shape[1] > 1:
529
+ query_states_phantom.append(query_states[index][pos])
530
+ key_states_phantom.append(key_states[index][pos])
531
+ value_states_phantom.append(value_states[index][pos])
532
+
533
+ # saving phantom qkv for inference
534
+ self.query_states_phantom = query_states_phantom
535
+ self.key_states_phantom = key_states_phantom
536
+ self.value_states_phantom = value_states_phantom
537
+
538
+ # phantom qkv: list to tensor
539
+ query_states_phantom = torch.stack(self.query_states_phantom)
540
+ key_states_phantom = torch.stack(self.key_states_phantom)
541
+ value_states_phantom = torch.stack(self.value_states_phantom)
542
+
543
+ # phantom qkv: 1 -> N (sequence)
544
+ query_states_phantom = self.xattn_query_phantom(q=query_states, k=query_states_phantom, v=query_states_phantom)
545
+ key_states_phantom = self.xattn_key_phantom(q=key_states, k=key_states_phantom, v=key_states_phantom)
546
+ value_states_phantom = self.xattn_value_phantom(q=value_states, k=value_states_phantom, v=value_states_phantom, is_residual=True)
547
+
548
+ # concat original qkv and phantom qkv for hidden-dimension / heads
549
+ query_states = torch.cat([query_states, query_states_phantom], dim=3)
550
+ key_states = torch.cat([key_states, key_states_phantom], dim=3)
551
+ value_states = torch.cat([value_states, value_states_phantom], dim=3)
552
+
553
+ if not self._flash_attn_uses_top_left_mask:
554
+ causal = self.is_causal
555
+ else:
556
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
557
+ causal = self.is_causal and query_length != 1
558
+
559
+ # Decide whether to use SWA or not by layer index.
560
+ if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
561
+ use_sliding_windows = False
562
+
563
+ # Contains at least one padding token in the sequence
564
+ if attention_mask is not None:
565
+ batch_size = query_states.shape[0]
566
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
567
+ query_states, key_states, value_states, attention_mask, query_length
568
+ )
569
+
570
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
571
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
572
+
573
+ if not use_sliding_windows:
574
+ attn_output_unpad = flash_attn_varlen_func(
575
+ query_states,
576
+ key_states,
577
+ value_states,
578
+ cu_seqlens_q=cu_seqlens_q,
579
+ cu_seqlens_k=cu_seqlens_k,
580
+ max_seqlen_q=max_seqlen_in_batch_q,
581
+ max_seqlen_k=max_seqlen_in_batch_k,
582
+ dropout_p=dropout,
583
+ softmax_scale=softmax_scale,
584
+ causal=causal,
585
+ )
586
+ else:
587
+ attn_output_unpad = flash_attn_varlen_func(
588
+ query_states,
589
+ key_states,
590
+ value_states,
591
+ cu_seqlens_q=cu_seqlens_q,
592
+ cu_seqlens_k=cu_seqlens_k,
593
+ max_seqlen_q=max_seqlen_in_batch_q,
594
+ max_seqlen_k=max_seqlen_in_batch_k,
595
+ dropout_p=dropout,
596
+ softmax_scale=softmax_scale,
597
+ causal=causal,
598
+ window_size=(self.config.sliding_window, self.config.sliding_window),
599
+ )
600
+
601
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
602
+ else:
603
+ if not use_sliding_windows:
604
+ attn_output = flash_attn_func(
605
+ query_states,
606
+ key_states,
607
+ value_states,
608
+ dropout,
609
+ softmax_scale=softmax_scale,
610
+ causal=causal,
611
+ )
612
+ else:
613
+ attn_output = flash_attn_func(
614
+ query_states,
615
+ key_states,
616
+ value_states,
617
+ dropout,
618
+ softmax_scale=softmax_scale,
619
+ causal=causal,
620
+ window_size=(self.config.sliding_window, self.config.sliding_window),
621
+ )
622
+ """
623
+ Phantom
624
+ """
625
+ if self.turn_on_phantom:
626
+ half_dim = attn_output.shape[-1] // 2
627
+ half1_o = attn_output[...,:half_dim]
628
+ half2_o = attn_output[...,half_dim:]
629
+ weight1 = self.gating_phantom_1(half1_o)
630
+ weight2 = self.gating_phantom_2(half2_o)
631
+ weight_norm = weight1.exp() / (weight1.exp() + weight2.exp())
632
+ attn_output = weight_norm * half1_o + (1-weight_norm) * half2_o
633
+ return attn_output
634
+
635
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
636
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
637
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
638
+
639
+ # On the first iteration we need to properly re-create the padding mask
640
+ # by slicing it on the proper place
641
+ if kv_seq_len != attention_mask.shape[-1]:
642
+ attention_mask_num_tokens = attention_mask.shape[-1]
643
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
644
+
645
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
646
+
647
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
648
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
649
+
650
+ if query_length == kv_seq_len:
651
+ query_layer = index_first_axis(
652
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
653
+ )
654
+ cu_seqlens_q = cu_seqlens_k
655
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
656
+ indices_q = indices_k
657
+ elif query_length == 1:
658
+ max_seqlen_in_batch_q = 1
659
+ cu_seqlens_q = torch.arange(
660
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
661
+ ) # There is a memcpy here, that is very bad.
662
+ indices_q = cu_seqlens_q[:-1]
663
+ query_layer = query_layer.squeeze(1)
664
+ else:
665
+ # The -q_len: slice assumes left padding.
666
+ attention_mask = attention_mask[:, -query_length:]
667
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
668
+
669
+ return (
670
+ query_layer,
671
+ key_layer,
672
+ value_layer,
673
+ indices_q,
674
+ (cu_seqlens_q, cu_seqlens_k),
675
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
676
+ )
677
+
678
+
679
+ # Copied from transformers.models.mixtral.modeling_mixtral.MixtralSdpaAttention with Mixtral->Qwen2
680
+ class Qwen2SdpaAttention(Qwen2Attention):
681
+ """
682
+ Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
683
+ `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
684
+ SDPA API.
685
+ """
686
+
687
+ # Adapted from Qwen2Attention.forward
688
+ def forward(
689
+ self,
690
+ hidden_states: torch.Tensor,
691
+ attention_mask: Optional[torch.Tensor] = None,
692
+ position_ids: Optional[torch.LongTensor] = None,
693
+ past_key_value: Optional[Cache] = None,
694
+ phantom_position: torch.BoolTensor = None,
695
+ output_attentions: bool = False,
696
+ use_cache: bool = False,
697
+ cache_position: Optional[torch.LongTensor] = None,
698
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
699
+ if output_attentions:
700
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
701
+ logger.warning_once(
702
+ "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
703
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
704
+ )
705
+ return super().forward(
706
+ hidden_states=hidden_states,
707
+ attention_mask=attention_mask,
708
+ position_ids=position_ids,
709
+ past_key_value=past_key_value,
710
+ output_attentions=output_attentions,
711
+ use_cache=use_cache,
712
+ )
713
+
714
+ bsz, q_len, _ = hidden_states.size()
715
+
716
+ query_states = self.q_proj(hidden_states)
717
+ key_states = self.k_proj(hidden_states)
718
+ value_states = self.v_proj(hidden_states)
719
+
720
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
721
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
722
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
723
+
724
+ kv_seq_len = key_states.shape[-2]
725
+ if past_key_value is not None:
726
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
727
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
728
+
729
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
730
+
731
+ if past_key_value is not None:
732
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
733
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
734
+
735
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
736
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
737
+
738
+ causal_mask = attention_mask
739
+ if attention_mask is not None: # no matter the length, we just slice it
740
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
741
+
742
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
743
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
744
+ if query_states.device.type == "cuda" and attention_mask is not None:
745
+ query_states = query_states.contiguous()
746
+ key_states = key_states.contiguous()
747
+ value_states = value_states.contiguous()
748
+
749
+ """
750
+ Phantom
751
+ """
752
+ if self.turn_on_phantom:
753
+
754
+ # Phantom Dimension Conversion for sdpa dimension
755
+ query_states = query_states.transpose(1, 2).contiguous()
756
+ key_states = key_states.transpose(1, 2).contiguous()
757
+ value_states = value_states.transpose(1, 2).contiguous()
758
+
759
+ # [Important] softmax_scale
760
+ softmax_scale = 1 / math.sqrt(query_states.shape[-1])
761
+
762
+ query_states_phantom = []
763
+ key_states_phantom = []
764
+ value_states_phantom = []
765
+ for index, pos in enumerate(phantom_position):
766
+ if query_states.shape[1] > 1:
767
+ query_states_phantom.append(query_states[index][pos])
768
+ key_states_phantom.append(key_states[index][pos])
769
+ value_states_phantom.append(value_states[index][pos])
770
+
771
+ # saving phantom qkv for inference
772
+ self.query_states_phantom = query_states_phantom
773
+ self.key_states_phantom = key_states_phantom
774
+ self.value_states_phantom = value_states_phantom
775
+
776
+ # phantom qkv: list to tensor
777
+ query_states_phantom = torch.stack(self.query_states_phantom)
778
+ key_states_phantom = torch.stack(self.key_states_phantom)
779
+ value_states_phantom = torch.stack(self.value_states_phantom)
780
+
781
+ # phantom qkv: 1 -> N (sequence)
782
+ query_states_phantom = self.xattn_query_phantom(q=query_states, k=query_states_phantom, v=query_states_phantom)
783
+ key_states_phantom = self.xattn_key_phantom(q=key_states, k=key_states_phantom, v=key_states_phantom)
784
+ value_states_phantom = self.xattn_value_phantom(q=value_states, k=value_states_phantom, v=value_states_phantom, is_residual=True)
785
+
786
+ # concat original qkv and phantom qkv for hidden-dimension / heads
787
+ query_states = torch.cat([query_states, query_states_phantom], dim=3)
788
+ key_states = torch.cat([key_states, key_states_phantom], dim=3)
789
+ value_states = torch.cat([value_states, value_states_phantom], dim=3)
790
+
791
+ # Phantom Dimension Conversion for sdpa dimension
792
+ query_states = query_states.transpose(1, 2).contiguous()
793
+ key_states = key_states.transpose(1, 2).contiguous()
794
+ value_states = value_states.transpose(1, 2).contiguous()
795
+
796
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
797
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
798
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
799
+ is_causal = True if causal_mask is None and q_len > 1 else False
800
+
801
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
802
+ query_states,
803
+ key_states,
804
+ value_states,
805
+ attn_mask=causal_mask,
806
+ dropout_p=self.attention_dropout if self.training else 0.0,
807
+ is_causal=is_causal,
808
+ scale=softmax_scale
809
+ )
810
+
811
+ """
812
+ Phantom
813
+ """
814
+ if self.turn_on_phantom:
815
+ attn_output = attn_output.transpose(1, 2).contiguous() # for sdpa dimension
816
+ half_dim = attn_output.shape[-1] // 2
817
+ half1_o = attn_output[...,:half_dim]
818
+ half2_o = attn_output[...,half_dim:]
819
+ weight1 = self.gating_phantom_1(half1_o)
820
+ weight2 = self.gating_phantom_2(half2_o)
821
+ weight_norm = weight1.exp() / (weight1.exp() + weight2.exp())
822
+ attn_output = weight_norm * half1_o + (1-weight_norm) * half2_o
823
+ attn_output = attn_output.transpose(1, 2).contiguous() # for sdpa dimension
824
+
825
+ attn_output = attn_output.transpose(1, 2).contiguous()
826
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
827
+
828
+ attn_output = self.o_proj(attn_output)
829
+
830
+ return attn_output, None, past_key_value
831
+
832
+
833
+ QWEN2_ATTENTION_CLASSES = {
834
+ "eager": Qwen2Attention,
835
+ "flash_attention_2": Qwen2FlashAttention2,
836
+ "sdpa": Qwen2SdpaAttention,
837
+ }
838
+
839
+
840
+ class Qwen2DecoderLayer(nn.Module):
841
+ def __init__(self, config: Qwen2Config, layer_idx: int):
842
+ super().__init__()
843
+ self.hidden_size = config.hidden_size
844
+
845
+ if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
846
+ logger.warning_once(
847
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
848
+ "unexpected results may be encountered."
849
+ )
850
+ self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
851
+
852
+ self.mlp = Qwen2MLP(config)
853
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
854
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
855
+
856
+ def forward(
857
+ self,
858
+ hidden_states: torch.Tensor,
859
+ attention_mask: Optional[torch.Tensor] = None,
860
+ position_ids: Optional[torch.LongTensor] = None,
861
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
862
+ phantom_position: torch.BoolTensor = None,
863
+ output_attentions: Optional[bool] = False,
864
+ use_cache: Optional[bool] = False,
865
+ cache_position: Optional[torch.LongTensor] = None,
866
+ **kwargs,
867
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
868
+ """
869
+ Args:
870
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
871
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
872
+ `(batch, sequence_length)` where padding elements are indicated by 0.
873
+ output_attentions (`bool`, *optional*):
874
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
875
+ returned tensors for more detail.
876
+ use_cache (`bool`, *optional*):
877
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
878
+ (see `past_key_values`).
879
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
880
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
881
+ Indices depicting the position of the input sequence tokens in the sequence.
882
+ kwargs (`dict`, *optional*):
883
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
884
+ into the model
885
+ """
886
+
887
+ residual = hidden_states
888
+
889
+ hidden_states = self.input_layernorm(hidden_states)
890
+
891
+ # Self Attention
892
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
893
+ hidden_states=hidden_states,
894
+ attention_mask=attention_mask,
895
+ position_ids=position_ids,
896
+ past_key_value=past_key_value,
897
+ phantom_position=phantom_position,
898
+ output_attentions=output_attentions,
899
+ use_cache=use_cache,
900
+ cache_position=cache_position,
901
+ )
902
+ hidden_states = residual + hidden_states
903
+
904
+ # Fully Connected
905
+ residual = hidden_states
906
+ hidden_states = self.post_attention_layernorm(hidden_states)
907
+ hidden_states = self.mlp(hidden_states)
908
+ hidden_states = residual + hidden_states
909
+
910
+ outputs = (hidden_states,)
911
+
912
+ if output_attentions:
913
+ outputs += (self_attn_weights,)
914
+
915
+ if use_cache:
916
+ outputs += (present_key_value,)
917
+
918
+ return outputs
919
+
920
+
921
+ QWEN2_START_DOCSTRING = r"""
922
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
923
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
924
+ etc.)
925
+
926
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
927
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
928
+ and behavior.
929
+
930
+ Parameters:
931
+ config ([`Qwen2Config`]):
932
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
933
+ load the weights associated with the model, only the configuration. Check out the
934
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
935
+ """
936
+
937
+
938
+ @add_start_docstrings(
939
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
940
+ QWEN2_START_DOCSTRING,
941
+ )
942
+ class Qwen2PreTrainedModel(PreTrainedModel):
943
+ config_class = Qwen2Config
944
+ base_model_prefix = "model"
945
+ supports_gradient_checkpointing = True
946
+ _no_split_modules = ["Qwen2DecoderLayer"]
947
+ _skip_keys_device_placement = "past_key_values"
948
+ _supports_flash_attn_2 = True
949
+ _supports_sdpa = True
950
+ _supports_cache_class = True
951
+
952
+ def _init_weights(self, module):
953
+ std = self.config.initializer_range
954
+ if isinstance(module, nn.Linear):
955
+ module.weight.data.normal_(mean=0.0, std=std)
956
+ if module.bias is not None:
957
+ module.bias.data.zero_()
958
+ elif isinstance(module, nn.Embedding):
959
+ module.weight.data.normal_(mean=0.0, std=std)
960
+ if module.padding_idx is not None:
961
+ module.weight.data[module.padding_idx].zero_()
962
+
963
+
964
+ QWEN2_INPUTS_DOCSTRING = r"""
965
+ Args:
966
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
967
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
968
+ it.
969
+
970
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
971
+ [`PreTrainedTokenizer.__call__`] for details.
972
+
973
+ [What are input IDs?](../glossary#input-ids)
974
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
975
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
976
+
977
+ - 1 for tokens that are **not masked**,
978
+ - 0 for tokens that are **masked**.
979
+
980
+ [What are attention masks?](../glossary#attention-mask)
981
+
982
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
983
+ [`PreTrainedTokenizer.__call__`] for details.
984
+
985
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
986
+ `past_key_values`).
987
+
988
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
989
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
990
+ information on the default strategy.
991
+
992
+ - 1 indicates the head is **not masked**,
993
+ - 0 indicates the head is **masked**.
994
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
995
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
996
+ config.n_positions - 1]`.
997
+
998
+ [What are position IDs?](../glossary#position-ids)
999
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1000
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1001
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1002
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1003
+
1004
+ Two formats are allowed:
1005
+ - a [`~cache_utils.Cache`] instance;
1006
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1007
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1008
+ cache format.
1009
+
1010
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1011
+ legacy cache format will be returned.
1012
+
1013
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1014
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1015
+ of shape `(batch_size, sequence_length)`.
1016
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1017
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1018
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1019
+ model's internal embedding lookup matrix.
1020
+ use_cache (`bool`, *optional*):
1021
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1022
+ `past_key_values`).
1023
+ output_attentions (`bool`, *optional*):
1024
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1025
+ tensors for more detail.
1026
+ output_hidden_states (`bool`, *optional*):
1027
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1028
+ more detail.
1029
+ return_dict (`bool`, *optional*):
1030
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1031
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
1032
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
1033
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
1034
+ the complete sequence length.
1035
+ """
1036
+
1037
+
1038
+ @add_start_docstrings(
1039
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
1040
+ QWEN2_START_DOCSTRING,
1041
+ )
1042
+ class Qwen2Model(Qwen2PreTrainedModel):
1043
+ """
1044
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
1045
+
1046
+ Args:
1047
+ config: Qwen2Config
1048
+ """
1049
+
1050
+ def __init__(self, config: Qwen2Config):
1051
+ super().__init__(config)
1052
+ self.padding_idx = config.pad_token_id
1053
+ self.vocab_size = config.vocab_size
1054
+
1055
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1056
+ self.layers = nn.ModuleList(
1057
+ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1058
+ )
1059
+ self._attn_implementation = config._attn_implementation
1060
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1061
+
1062
+ self.gradient_checkpointing = False
1063
+ # Initialize weights and apply final processing
1064
+ self.post_init()
1065
+
1066
+ def get_input_embeddings(self):
1067
+ return self.embed_tokens
1068
+
1069
+ def set_input_embeddings(self, value):
1070
+ self.embed_tokens = value
1071
+
1072
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1073
+ def forward(
1074
+ self,
1075
+ input_ids: torch.LongTensor = None,
1076
+ attention_mask: Optional[torch.Tensor] = None,
1077
+ position_ids: Optional[torch.LongTensor] = None,
1078
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1079
+ phantom_position: torch.BoolTensor = None,
1080
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1081
+ use_cache: Optional[bool] = None,
1082
+ output_attentions: Optional[bool] = None,
1083
+ output_hidden_states: Optional[bool] = None,
1084
+ return_dict: Optional[bool] = None,
1085
+ cache_position: Optional[torch.LongTensor] = None,
1086
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1087
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1088
+ output_hidden_states = (
1089
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1090
+ )
1091
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1092
+
1093
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1094
+
1095
+ if (input_ids is None) ^ (inputs_embeds is not None):
1096
+ raise ValueError(
1097
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
1098
+ )
1099
+
1100
+ if self.gradient_checkpointing and self.training:
1101
+ if use_cache:
1102
+ logger.warning_once(
1103
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1104
+ )
1105
+ use_cache = False
1106
+
1107
+ use_legacy_cache = False
1108
+ if use_cache and not isinstance(past_key_values, Cache):
1109
+ use_legacy_cache = True
1110
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1111
+ logger.warning_once(
1112
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
1113
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
1114
+ )
1115
+
1116
+ if inputs_embeds is None:
1117
+ inputs_embeds = self.embed_tokens(input_ids)
1118
+
1119
+ if cache_position is None:
1120
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1121
+ cache_position = torch.arange(
1122
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1123
+ )
1124
+ if position_ids is None:
1125
+ position_ids = cache_position.unsqueeze(0)
1126
+
1127
+ causal_mask = self._update_causal_mask(
1128
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
1129
+ )
1130
+
1131
+ hidden_states = inputs_embeds
1132
+
1133
+ # decoder layers
1134
+ all_hidden_states = () if output_hidden_states else None
1135
+ all_self_attns = () if output_attentions else None
1136
+ next_decoder_cache = None
1137
+
1138
+ for decoder_layer in self.layers:
1139
+ if output_hidden_states:
1140
+ all_hidden_states += (hidden_states,)
1141
+
1142
+ if self.gradient_checkpointing and self.training:
1143
+ layer_outputs = self._gradient_checkpointing_func(
1144
+ decoder_layer.__call__,
1145
+ hidden_states,
1146
+ causal_mask,
1147
+ position_ids,
1148
+ past_key_values,
1149
+ phantom_position,
1150
+ output_attentions,
1151
+ use_cache,
1152
+ cache_position,
1153
+ )
1154
+ else:
1155
+ layer_outputs = decoder_layer(
1156
+ hidden_states,
1157
+ attention_mask=causal_mask,
1158
+ position_ids=position_ids,
1159
+ past_key_value=past_key_values,
1160
+ phantom_position=phantom_position,
1161
+ output_attentions=output_attentions,
1162
+ use_cache=use_cache,
1163
+ cache_position=cache_position,
1164
+ )
1165
+
1166
+ hidden_states = layer_outputs[0]
1167
+
1168
+ if use_cache:
1169
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1170
+
1171
+ if output_attentions:
1172
+ all_self_attns += (layer_outputs[1],)
1173
+
1174
+ hidden_states = self.norm(hidden_states)
1175
+
1176
+ # add hidden states from the last decoder layer
1177
+ if output_hidden_states:
1178
+ all_hidden_states += (hidden_states,)
1179
+
1180
+ next_cache = None
1181
+ if use_cache:
1182
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1183
+
1184
+ if not return_dict:
1185
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1186
+ return BaseModelOutputWithPast(
1187
+ last_hidden_state=hidden_states,
1188
+ past_key_values=next_cache,
1189
+ hidden_states=all_hidden_states,
1190
+ attentions=all_self_attns,
1191
+ )
1192
+
1193
+ # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
1194
+ def _update_causal_mask(
1195
+ self,
1196
+ attention_mask: torch.Tensor,
1197
+ input_tensor: torch.Tensor,
1198
+ cache_position: torch.Tensor,
1199
+ past_key_values: Cache,
1200
+ output_attentions: bool,
1201
+ ):
1202
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
1203
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
1204
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
1205
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
1206
+
1207
+ if self.config._attn_implementation == "flash_attention_2":
1208
+ if attention_mask is not None and 0.0 in attention_mask:
1209
+ return attention_mask
1210
+ return None
1211
+
1212
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1213
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1214
+ # to infer the attention mask.
1215
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1216
+ using_static_cache = isinstance(past_key_values, StaticCache)
1217
+
1218
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1219
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1220
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1221
+ attention_mask,
1222
+ inputs_embeds=input_tensor,
1223
+ past_key_values_length=past_seen_tokens,
1224
+ is_training=self.training,
1225
+ ):
1226
+ return None
1227
+
1228
+ dtype, device = input_tensor.dtype, input_tensor.device
1229
+ min_dtype = torch.finfo(dtype).min
1230
+ sequence_length = input_tensor.shape[1]
1231
+ if using_static_cache:
1232
+ target_length = past_key_values.get_max_length()
1233
+ else:
1234
+ target_length = (
1235
+ attention_mask.shape[-1]
1236
+ if isinstance(attention_mask, torch.Tensor)
1237
+ else past_seen_tokens + sequence_length + 1
1238
+ )
1239
+
1240
+ if attention_mask is not None and attention_mask.dim() == 4:
1241
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1242
+ if attention_mask.max() != 0:
1243
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1244
+ causal_mask = attention_mask
1245
+ else:
1246
+ causal_mask = torch.full(
1247
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1248
+ )
1249
+ if sequence_length != 1:
1250
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1251
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1252
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1253
+ if attention_mask is not None:
1254
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1255
+ mask_length = attention_mask.shape[-1]
1256
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1257
+ padding_mask = padding_mask == 0
1258
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1259
+ padding_mask, min_dtype
1260
+ )
1261
+ if (
1262
+ self.config._attn_implementation == "sdpa"
1263
+ and attention_mask is not None
1264
+ and attention_mask.device.type == "cuda"
1265
+ and not output_attentions
1266
+ ):
1267
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1268
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1269
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1270
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1271
+
1272
+ return causal_mask
1273
+
1274
+
1275
+ class Qwen2ForCausalLM(Qwen2PreTrainedModel):
1276
+ _tied_weights_keys = ["lm_head.weight"]
1277
+
1278
+ def __init__(self, config):
1279
+ super().__init__(config)
1280
+ self.model = Qwen2Model(config)
1281
+ self.vocab_size = config.vocab_size
1282
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1283
+
1284
+ # Initialize weights and apply final processing
1285
+ self.post_init()
1286
+
1287
+ def get_input_embeddings(self):
1288
+ return self.model.embed_tokens
1289
+
1290
+ def set_input_embeddings(self, value):
1291
+ self.model.embed_tokens = value
1292
+
1293
+ def get_output_embeddings(self):
1294
+ return self.lm_head
1295
+
1296
+ def set_output_embeddings(self, new_embeddings):
1297
+ self.lm_head = new_embeddings
1298
+
1299
+ def set_decoder(self, decoder):
1300
+ self.model = decoder
1301
+
1302
+ def get_decoder(self):
1303
+ return self.model
1304
+
1305
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1306
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1307
+ def forward(
1308
+ self,
1309
+ input_ids: torch.LongTensor = None,
1310
+ attention_mask: Optional[torch.Tensor] = None,
1311
+ position_ids: Optional[torch.LongTensor] = None,
1312
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1313
+ phantom_position: torch.BoolTensor = None,
1314
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1315
+ labels: Optional[torch.LongTensor] = None,
1316
+ use_cache: Optional[bool] = None,
1317
+ output_attentions: Optional[bool] = None,
1318
+ output_hidden_states: Optional[bool] = None,
1319
+ return_dict: Optional[bool] = None,
1320
+ cache_position: Optional[torch.LongTensor] = None,
1321
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1322
+ r"""
1323
+ Args:
1324
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1325
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1326
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1327
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1328
+
1329
+ Returns:
1330
+
1331
+ Example:
1332
+
1333
+ ```python
1334
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
1335
+
1336
+ >>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1337
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1338
+
1339
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1340
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1341
+
1342
+ >>> # Generate
1343
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1344
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1345
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1346
+ ```"""
1347
+
1348
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1349
+ output_hidden_states = (
1350
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1351
+ )
1352
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1353
+
1354
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1355
+ outputs = self.model(
1356
+ input_ids=input_ids,
1357
+ attention_mask=attention_mask,
1358
+ position_ids=position_ids,
1359
+ past_key_values=past_key_values,
1360
+ phantom_position=phantom_position,
1361
+ inputs_embeds=inputs_embeds,
1362
+ use_cache=use_cache,
1363
+ output_attentions=output_attentions,
1364
+ output_hidden_states=output_hidden_states,
1365
+ return_dict=return_dict,
1366
+ cache_position=cache_position,
1367
+ )
1368
+
1369
+ hidden_states = outputs[0]
1370
+ logits = self.lm_head(hidden_states)
1371
+ logits = logits.float()
1372
+
1373
+ loss = None
1374
+ if labels is not None:
1375
+ # Shift so that tokens < n predict n
1376
+ shift_logits = logits[..., :-1, :].contiguous()
1377
+ shift_labels = labels[..., 1:].contiguous()
1378
+ # Flatten the tokens
1379
+ loss_fct = CrossEntropyLoss()
1380
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1381
+ shift_labels = shift_labels.view(-1)
1382
+ # Enable model parallelism
1383
+ shift_labels = shift_labels.to(shift_logits.device)
1384
+ loss = loss_fct(shift_logits, shift_labels)
1385
+
1386
+ if not return_dict:
1387
+ output = (logits,) + outputs[1:]
1388
+ return (loss,) + output if loss is not None else output
1389
+
1390
+ return CausalLMOutputWithPast(
1391
+ loss=loss,
1392
+ logits=logits,
1393
+ past_key_values=outputs.past_key_values,
1394
+ hidden_states=outputs.hidden_states,
1395
+ attentions=outputs.attentions,
1396
+ )
1397
+
1398
+ def prepare_inputs_for_generation(
1399
+ self,
1400
+ input_ids,
1401
+ past_key_values=None,
1402
+ phantom_position=None,
1403
+ attention_mask=None,
1404
+ inputs_embeds=None,
1405
+ cache_position=None,
1406
+ use_cache=True,
1407
+ **kwargs,
1408
+ ):
1409
+ past_length = 0
1410
+ # Omit tokens covered by past_key_values
1411
+ if past_key_values is not None:
1412
+ # Past key values are always initialized with a `Cache` object -> no need for if-else anymore
1413
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1414
+ max_cache_length = (
1415
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1416
+ if past_key_values.get_max_length() is not None
1417
+ else None
1418
+ )
1419
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1420
+
1421
+ # Keep only the unprocessed tokens:
1422
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1423
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1424
+ # input)
1425
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1426
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1427
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1428
+ # input_ids based on the past_length.
1429
+ elif past_length < input_ids.shape[1]:
1430
+ input_ids = input_ids[:, past_length:]
1431
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1432
+
1433
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1434
+ if (
1435
+ max_cache_length is not None
1436
+ and attention_mask is not None
1437
+ and cache_length + input_ids.shape[1] > max_cache_length
1438
+ ):
1439
+ attention_mask = attention_mask[:, -max_cache_length:]
1440
+
1441
+ position_ids = kwargs.get("position_ids", None)
1442
+ if attention_mask is not None and position_ids is None:
1443
+ # create position_ids on the fly for batch generation
1444
+ position_ids = attention_mask.long().cumsum(-1) - 1
1445
+ position_ids.masked_fill_(attention_mask == 0, 1)
1446
+ if past_key_values:
1447
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1448
+
1449
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1450
+ if inputs_embeds is not None and past_length == 0:
1451
+ model_inputs = {"inputs_embeds": inputs_embeds}
1452
+ else:
1453
+ model_inputs = {"input_ids": input_ids}
1454
+
1455
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1456
+ if cache_position is None:
1457
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1458
+ elif use_cache:
1459
+ cache_position = cache_position[-input_length:]
1460
+
1461
+ model_inputs.update(
1462
+ {
1463
+ "position_ids": position_ids,
1464
+ "past_key_values": past_key_values,
1465
+ "phantom_position": phantom_position,
1466
+ "use_cache": use_cache,
1467
+ "attention_mask": attention_mask,
1468
+ "cache_position": cache_position,
1469
+ }
1470
+ )
1471
+ return model_inputs
1472
+
1473
+ @staticmethod
1474
+ def _reorder_cache(past_key_values, beam_idx):
1475
+ reordered_past = ()
1476
+ for layer_past in past_key_values:
1477
+ reordered_past += (
1478
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1479
+ )
1480
+ return reordered_past
1481
+
1482
+
1483
+ @add_start_docstrings(
1484
+ """
1485
+ The Qwen2 Model transformer with a sequence classification head on top (linear layer).
1486
+
1487
+ [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1488
+ (e.g. GPT-2) do.
1489
+
1490
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1491
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1492
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1493
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1494
+ each row of the batch).
1495
+ """,
1496
+ QWEN2_START_DOCSTRING,
1497
+ )
1498
+ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
1499
+ def __init__(self, config):
1500
+ super().__init__(config)
1501
+ self.num_labels = config.num_labels
1502
+ self.model = Qwen2Model(config)
1503
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1504
+
1505
+ # Initialize weights and apply final processing
1506
+ self.post_init()
1507
+
1508
+ def get_input_embeddings(self):
1509
+ return self.model.embed_tokens
1510
+
1511
+ def set_input_embeddings(self, value):
1512
+ self.model.embed_tokens = value
1513
+
1514
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1515
+ def forward(
1516
+ self,
1517
+ input_ids: torch.LongTensor = None,
1518
+ attention_mask: Optional[torch.Tensor] = None,
1519
+ position_ids: Optional[torch.LongTensor] = None,
1520
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1521
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1522
+ labels: Optional[torch.LongTensor] = None,
1523
+ use_cache: Optional[bool] = None,
1524
+ output_attentions: Optional[bool] = None,
1525
+ output_hidden_states: Optional[bool] = None,
1526
+ return_dict: Optional[bool] = None,
1527
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1528
+ r"""
1529
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1530
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1531
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1532
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1533
+ """
1534
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1535
+
1536
+ transformer_outputs = self.model(
1537
+ input_ids,
1538
+ attention_mask=attention_mask,
1539
+ position_ids=position_ids,
1540
+ past_key_values=past_key_values,
1541
+ inputs_embeds=inputs_embeds,
1542
+ use_cache=use_cache,
1543
+ output_attentions=output_attentions,
1544
+ output_hidden_states=output_hidden_states,
1545
+ return_dict=return_dict,
1546
+ )
1547
+ hidden_states = transformer_outputs[0]
1548
+ logits = self.score(hidden_states)
1549
+
1550
+ if input_ids is not None:
1551
+ batch_size = input_ids.shape[0]
1552
+ else:
1553
+ batch_size = inputs_embeds.shape[0]
1554
+
1555
+ if self.config.pad_token_id is None and batch_size != 1:
1556
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1557
+ if self.config.pad_token_id is None:
1558
+ sequence_lengths = -1
1559
+ else:
1560
+ if input_ids is not None:
1561
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1562
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1563
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1564
+ sequence_lengths = sequence_lengths.to(logits.device)
1565
+ else:
1566
+ sequence_lengths = -1
1567
+
1568
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1569
+
1570
+ loss = None
1571
+ if labels is not None:
1572
+ labels = labels.to(logits.device)
1573
+ if self.config.problem_type is None:
1574
+ if self.num_labels == 1:
1575
+ self.config.problem_type = "regression"
1576
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1577
+ self.config.problem_type = "single_label_classification"
1578
+ else:
1579
+ self.config.problem_type = "multi_label_classification"
1580
+
1581
+ if self.config.problem_type == "regression":
1582
+ loss_fct = MSELoss()
1583
+ if self.num_labels == 1:
1584
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1585
+ else:
1586
+ loss = loss_fct(pooled_logits, labels)
1587
+ elif self.config.problem_type == "single_label_classification":
1588
+ loss_fct = CrossEntropyLoss()
1589
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1590
+ elif self.config.problem_type == "multi_label_classification":
1591
+ loss_fct = BCEWithLogitsLoss()
1592
+ loss = loss_fct(pooled_logits, labels)
1593
+ if not return_dict:
1594
+ output = (pooled_logits,) + transformer_outputs[1:]
1595
+ return ((loss,) + output) if loss is not None else output
1596
+
1597
+ return SequenceClassifierOutputWithPast(
1598
+ loss=loss,
1599
+ logits=pooled_logits,
1600
+ past_key_values=transformer_outputs.past_key_values,
1601
+ hidden_states=transformer_outputs.hidden_states,
1602
+ attentions=transformer_outputs.attentions,
1603
+ )
1604
+
1605
+
1606
+ @add_start_docstrings(
1607
+ """
1608
+ The Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1609
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1610
+ """,
1611
+ QWEN2_START_DOCSTRING,
1612
+ )
1613
+ # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->Qwen2, LLAMA->QWEN2
1614
+ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
1615
+ def __init__(self, config):
1616
+ super().__init__(config)
1617
+ self.num_labels = config.num_labels
1618
+ self.model = Qwen2Model(config)
1619
+ if getattr(config, "classifier_dropout", None) is not None:
1620
+ classifier_dropout = config.classifier_dropout
1621
+ elif getattr(config, "hidden_dropout", None) is not None:
1622
+ classifier_dropout = config.hidden_dropout
1623
+ else:
1624
+ classifier_dropout = 0.1
1625
+ self.dropout = nn.Dropout(classifier_dropout)
1626
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1627
+
1628
+ # Initialize weights and apply final processing
1629
+ self.post_init()
1630
+
1631
+ def get_input_embeddings(self):
1632
+ return self.model.embed_tokens
1633
+
1634
+ def set_input_embeddings(self, value):
1635
+ self.model.embed_tokens = value
1636
+
1637
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1638
+ def forward(
1639
+ self,
1640
+ input_ids: Optional[torch.LongTensor] = None,
1641
+ attention_mask: Optional[torch.Tensor] = None,
1642
+ position_ids: Optional[torch.LongTensor] = None,
1643
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1644
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1645
+ labels: Optional[torch.LongTensor] = None,
1646
+ use_cache: Optional[bool] = None,
1647
+ output_attentions: Optional[bool] = None,
1648
+ output_hidden_states: Optional[bool] = None,
1649
+ return_dict: Optional[bool] = None,
1650
+ ) -> Union[Tuple, TokenClassifierOutput]:
1651
+ r"""
1652
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1653
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1654
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1655
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1656
+ """
1657
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1658
+
1659
+ outputs = self.model(
1660
+ input_ids,
1661
+ attention_mask=attention_mask,
1662
+ position_ids=position_ids,
1663
+ past_key_values=past_key_values,
1664
+ inputs_embeds=inputs_embeds,
1665
+ use_cache=use_cache,
1666
+ output_attentions=output_attentions,
1667
+ output_hidden_states=output_hidden_states,
1668
+ return_dict=return_dict,
1669
+ )
1670
+ sequence_output = outputs[0]
1671
+ sequence_output = self.dropout(sequence_output)
1672
+ logits = self.score(sequence_output)
1673
+
1674
+ loss = None
1675
+ if labels is not None:
1676
+ loss_fct = CrossEntropyLoss()
1677
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1678
+
1679
+ if not return_dict:
1680
+ output = (logits,) + outputs[2:]
1681
+ return ((loss,) + output) if loss is not None else output
1682
+
1683
+ return TokenClassifierOutput(
1684
+ loss=loss,
1685
+ logits=logits,
1686
+ hidden_states=outputs.hidden_states,
1687
+ attentions=outputs.attentions,
1688
+ )
model/arch_1_8b/configuration_intern_vit.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Union
3
+
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class InternVisionConfig(PretrainedConfig):
11
+ r"""
12
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
13
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
14
+
15
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
16
+ documentation from [`PretrainedConfig`] for more information.
17
+
18
+ Args:
19
+ num_channels (`int`, *optional*, defaults to 3):
20
+ Number of color channels in the input images (e.g., 3 for RGB).
21
+ patch_size (`int`, *optional*, defaults to 14):
22
+ The size (resolution) of each patch.
23
+ image_size (`int`, *optional*, defaults to 224):
24
+ The size (resolution) of each image.
25
+ qkv_bias (`bool`, *optional*, defaults to `False`):
26
+ Whether to add a bias to the queries and values in the self-attention layers.
27
+ hidden_size (`int`, *optional*, defaults to 3200):
28
+ Dimensionality of the encoder layers and the pooler layer.
29
+ num_attention_heads (`int`, *optional*, defaults to 25):
30
+ Number of attention heads for each attention layer in the Transformer encoder.
31
+ intermediate_size (`int`, *optional*, defaults to 12800):
32
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
33
+ qk_normalization (`bool`, *optional*, defaults to `True`):
34
+ Whether to normalize the queries and keys in the self-attention layers.
35
+ num_hidden_layers (`int`, *optional*, defaults to 48):
36
+ Number of hidden layers in the Transformer encoder.
37
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
38
+ Whether to use flash attention mechanism.
39
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
40
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
41
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
42
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
43
+ The epsilon used by the layer normalization layers.
44
+ dropout (`float`, *optional*, defaults to 0.0):
45
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
46
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
47
+ Dropout rate for stochastic depth.
48
+ attention_dropout (`float`, *optional*, defaults to 0.0):
49
+ The dropout ratio for the attention probabilities.
50
+ initializer_range (`float`, *optional*, defaults to 0.02):
51
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
52
+ initializer_factor (`float`, *optional*, defaults to 0.1):
53
+ A factor for layer scale.
54
+ """
55
+
56
+ model_type = 'intern_vit_300m'
57
+
58
+ def __init__(
59
+ self,
60
+ num_channels=3,
61
+ patch_size=14,
62
+ image_size=224,
63
+ qkv_bias=False,
64
+ hidden_size=3200,
65
+ num_attention_heads=25,
66
+ intermediate_size=12800,
67
+ qk_normalization=True,
68
+ num_hidden_layers=48,
69
+ use_flash_attn=True,
70
+ hidden_act='gelu',
71
+ norm_type='rms_norm',
72
+ layer_norm_eps=1e-6,
73
+ dropout=0.0,
74
+ drop_path_rate=0.0,
75
+ attention_dropout=0.0,
76
+ initializer_range=0.02,
77
+ initializer_factor=0.1,
78
+ **kwargs,
79
+ ):
80
+ super().__init__(**kwargs)
81
+
82
+ self.hidden_size = hidden_size
83
+ self.intermediate_size = intermediate_size
84
+ self.dropout = dropout
85
+ self.drop_path_rate = drop_path_rate
86
+ self.num_hidden_layers = num_hidden_layers
87
+ self.num_attention_heads = num_attention_heads
88
+ self.num_channels = num_channels
89
+ self.patch_size = patch_size
90
+ self.image_size = image_size
91
+ self.initializer_range = initializer_range
92
+ self.initializer_factor = initializer_factor
93
+ self.attention_dropout = attention_dropout
94
+ self.layer_norm_eps = layer_norm_eps
95
+ self.hidden_act = hidden_act
96
+ self.norm_type = norm_type
97
+ self.qkv_bias = qkv_bias
98
+ self.qk_normalization = qk_normalization
99
+ self.use_flash_attn = use_flash_attn
100
+
101
+ @classmethod
102
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
103
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
104
+
105
+ if 'vision_config' in config_dict:
106
+ config_dict = config_dict['vision_config']
107
+
108
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
109
+ logger.warning(
110
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
111
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
112
+ )
113
+
114
+ return cls.from_dict(config_dict, **kwargs)
model/arch_1_8b/configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
model/arch_1_8b/configuration_phantom.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from transformers import LlamaConfig
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ from .configuration_intern_vit import InternVisionConfig
8
+ from .configuration_internlm2 import InternLM2Config
9
+
10
+ logger = logging.get_logger(__name__)
11
+
12
+
13
+ class PhantomConfig(PretrainedConfig):
14
+ model_type = 'phantom'
15
+ is_composition = True
16
+
17
+ def __init__(
18
+ self,
19
+ vision_config=None,
20
+ llm_config=None,
21
+ use_backbone_lora=0,
22
+ use_llm_lora=0,
23
+ force_image_size=None,
24
+ downsample_ratio=0.5,
25
+ template=None,
26
+ dynamic_image_size=False,
27
+ use_thumbnail=False,
28
+ min_dynamic_patch=1,
29
+ max_dynamic_patch=6,
30
+ **kwargs):
31
+ super().__init__(**kwargs)
32
+
33
+ if vision_config is None:
34
+ vision_config = {}
35
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
36
+
37
+ if llm_config is None:
38
+ llm_config = {}
39
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
40
+
41
+ self.vision_config = InternVisionConfig(**vision_config)
42
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
43
+ self.llm_config = LlamaConfig(**llm_config)
44
+ elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
45
+ self.llm_config = InternLM2Config(**llm_config)
46
+ else:
47
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
48
+ self.use_backbone_lora = use_backbone_lora
49
+ self.use_llm_lora = use_llm_lora
50
+ self.force_image_size = force_image_size
51
+ self.downsample_ratio = downsample_ratio
52
+ self.template = template
53
+ self.dynamic_image_size = dynamic_image_size
54
+ self.use_thumbnail = use_thumbnail
55
+ self.min_dynamic_patch = min_dynamic_patch
56
+ self.max_dynamic_patch = max_dynamic_patch
57
+
58
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
59
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
60
+
61
+ def to_dict(self):
62
+ """
63
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
64
+
65
+ Returns:
66
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
67
+ """
68
+ output = copy.deepcopy(self.__dict__)
69
+ output['vision_config'] = self.vision_config.to_dict()
70
+ output['llm_config'] = self.llm_config.to_dict()
71
+ output['model_type'] = self.__class__.model_type
72
+ output['use_backbone_lora'] = self.use_backbone_lora
73
+ output['use_llm_lora'] = self.use_llm_lora
74
+ output['force_image_size'] = self.force_image_size
75
+ output['downsample_ratio'] = self.downsample_ratio
76
+ output['template'] = self.template
77
+ output['dynamic_image_size'] = self.dynamic_image_size
78
+ output['use_thumbnail'] = self.use_thumbnail
79
+ output['min_dynamic_patch'] = self.min_dynamic_patch
80
+ output['max_dynamic_patch'] = self.max_dynamic_patch
81
+
82
+ return output
model/arch_1_8b/modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ import torch.utils.checkpoint
6
+ from einops import rearrange
7
+ from timm.models.layers import DropPath
8
+ from torch import nn
9
+ from transformers.activations import ACT2FN
10
+ from transformers.modeling_outputs import (BaseModelOutput,
11
+ BaseModelOutputWithPooling)
12
+ from transformers.modeling_utils import PreTrainedModel
13
+ from transformers.utils import logging
14
+
15
+ from .configuration_intern_vit import InternVisionConfig
16
+
17
+ try:
18
+ try: # v1
19
+ from flash_attn.flash_attn_interface import \
20
+ flash_attn_unpadded_qkvpacked_func
21
+ except: # v2
22
+ from flash_attn.flash_attn_interface import \
23
+ flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
24
+
25
+ from flash_attn.bert_padding import pad_input, unpad_input
26
+
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_unpadded_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_unpadded_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = False
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
model/arch_1_8b/modeling_internlm2.py ADDED
@@ -0,0 +1,1488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ # Phantom
46
+ from utils.utils import *
47
+
48
+ logger = logging.get_logger(__name__)
49
+
50
+ _CONFIG_FOR_DOC = 'InternLM2Config'
51
+
52
+ flash_attn_func, flash_attn_varlen_func = None, None
53
+ pad_input, index_first_axis, unpad_input = None, None, None
54
+ try:
55
+ from flash_attn import flash_attn_func as _flash_attn_func
56
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
57
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
58
+ from flash_attn.bert_padding import pad_input as _pad_input
59
+ from flash_attn.bert_padding import unpad_input as _unpad_input
60
+
61
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
62
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
63
+ has_flash_attn = True
64
+ except:
65
+ has_flash_attn = False
66
+
67
+
68
+ def _import_flash_attn():
69
+ global flash_attn_func, flash_attn_varlen_func
70
+ global pad_input, index_first_axis, unpad_input
71
+ try:
72
+ from flash_attn import flash_attn_func as _flash_attn_func
73
+ from flash_attn import \
74
+ flash_attn_varlen_func as _flash_attn_varlen_func
75
+ from flash_attn.bert_padding import \
76
+ index_first_axis as _index_first_axis
77
+ from flash_attn.bert_padding import pad_input as _pad_input
78
+ from flash_attn.bert_padding import unpad_input as _unpad_input
79
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
80
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
81
+ except ImportError:
82
+ raise ImportError('flash_attn is not installed.')
83
+
84
+
85
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
86
+ def _get_unpad_data(attention_mask):
87
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
88
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
89
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
90
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
91
+ return (
92
+ indices,
93
+ cu_seqlens,
94
+ max_seqlen_in_batch,
95
+ )
96
+
97
+
98
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
99
+ def _make_causal_mask(
100
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
101
+ ):
102
+ """
103
+ Make causal mask used for bi-directional self-attention.
104
+ """
105
+ bsz, tgt_len = input_ids_shape
106
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
107
+ mask_cond = torch.arange(mask.size(-1), device=device)
108
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
109
+ mask = mask.to(dtype)
110
+
111
+ if past_key_values_length > 0:
112
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
113
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
114
+
115
+
116
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
117
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
118
+ """
119
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
120
+ """
121
+ bsz, src_len = mask.size()
122
+ tgt_len = tgt_len if tgt_len is not None else src_len
123
+
124
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
125
+
126
+ inverted_mask = 1.0 - expanded_mask
127
+
128
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
129
+
130
+
131
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
132
+ class InternLM2RMSNorm(nn.Module):
133
+ def __init__(self, hidden_size, eps=1e-6):
134
+ """
135
+ InternLM2RMSNorm is equivalent to T5LayerNorm
136
+ """
137
+ super().__init__()
138
+ self.weight = nn.Parameter(torch.ones(hidden_size))
139
+ self.variance_epsilon = eps
140
+
141
+ def forward(self, hidden_states):
142
+ input_dtype = hidden_states.dtype
143
+ hidden_states = hidden_states.to(torch.float32)
144
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
145
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
146
+ return self.weight * hidden_states.to(input_dtype)
147
+
148
+
149
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
150
+ class InternLM2RotaryEmbedding(nn.Module):
151
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
152
+ super().__init__()
153
+
154
+ self.dim = dim
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.base = base
157
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
158
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
159
+
160
+ # Build here to make `torch.jit.trace` work.
161
+ self._set_cos_sin_cache(
162
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
163
+ )
164
+
165
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
166
+ self.max_seq_len_cached = seq_len
167
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
168
+
169
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
170
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
171
+ emb = torch.cat((freqs, freqs), dim=-1)
172
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
173
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
174
+
175
+ def forward(self, x, seq_len=None):
176
+ # x: [bs, num_attention_heads, seq_len, head_size]
177
+ if seq_len > self.max_seq_len_cached:
178
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
179
+
180
+ return (
181
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
182
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
183
+ )
184
+
185
+
186
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
187
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
188
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
189
+
190
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
191
+ self.scaling_factor = scaling_factor
192
+ super().__init__(dim, max_position_embeddings, base, device)
193
+
194
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
195
+ self.max_seq_len_cached = seq_len
196
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
197
+ t = t / self.scaling_factor
198
+
199
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
200
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
201
+ emb = torch.cat((freqs, freqs), dim=-1)
202
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
203
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
204
+
205
+
206
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
207
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
208
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
209
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
210
+ """
211
+
212
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
213
+ self.scaling_factor = scaling_factor
214
+ super().__init__(dim, max_position_embeddings, base, device)
215
+
216
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
217
+ self.max_seq_len_cached = seq_len
218
+
219
+ if seq_len > self.max_position_embeddings:
220
+ base = self.base * (
221
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
222
+ ) ** (self.dim / (self.dim - 2))
223
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
224
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
225
+
226
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
227
+
228
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
229
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
230
+ emb = torch.cat((freqs, freqs), dim=-1)
231
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
232
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
233
+
234
+
235
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
236
+ def rotate_half(x):
237
+ """Rotates half the hidden dims of the input."""
238
+ x1 = x[..., : x.shape[-1] // 2]
239
+ x2 = x[..., x.shape[-1] // 2 :]
240
+ return torch.cat((-x2, x1), dim=-1)
241
+
242
+
243
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
244
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
245
+ """Applies Rotary Position Embedding to the query and key tensors."""
246
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
247
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
248
+ q_embed = (q * cos) + (rotate_half(q) * sin)
249
+ k_embed = (k * cos) + (rotate_half(k) * sin)
250
+ return q_embed, k_embed
251
+
252
+
253
+ class InternLM2MLP(nn.Module):
254
+ def __init__(self, config):
255
+ super().__init__()
256
+ self.config = config
257
+ self.hidden_size = config.hidden_size
258
+ self.intermediate_size = config.intermediate_size
259
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
260
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
261
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
262
+ self.act_fn = ACT2FN[config.hidden_act]
263
+
264
+ def forward(self, x):
265
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
266
+
267
+ return down_proj
268
+
269
+
270
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
271
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
272
+ """
273
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
274
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
275
+ """
276
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
277
+ if n_rep == 1:
278
+ return hidden_states
279
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
280
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
281
+
282
+
283
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
284
+ class InternLM2Attention(nn.Module):
285
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
286
+
287
+ def __init__(self, config: InternLM2Config):
288
+ super().__init__()
289
+ self.config = config
290
+ self.hidden_size = config.hidden_size
291
+ self.num_heads = config.num_attention_heads
292
+ self.head_dim = self.hidden_size // self.num_heads
293
+ self.num_key_value_heads = config.num_key_value_heads
294
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
295
+ self.max_position_embeddings = config.max_position_embeddings
296
+ self.is_causal = True
297
+
298
+ if (self.head_dim * self.num_heads) != self.hidden_size:
299
+ raise ValueError(
300
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
301
+ f' and `num_heads`: {self.num_heads}).'
302
+ )
303
+
304
+ self.wqkv = nn.Linear(
305
+ self.hidden_size,
306
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
307
+ bias=config.bias,
308
+ )
309
+
310
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
311
+ self._init_rope()
312
+
313
+ """
314
+ Phantom
315
+ """
316
+ # Phantom Init
317
+ self.turn_on_phantom = True
318
+ self.xattn_query_phantom = XAttention(self.head_dim)
319
+ self.xattn_key_phantom = XAttention(self.head_dim)
320
+ self.xattn_value_phantom = XAttention(self.head_dim)
321
+ self.gating_phantom_1 = nn.Linear(self.head_dim, 1)
322
+ self.gating_phantom_2 = nn.Linear(self.head_dim, 1)
323
+
324
+
325
+ def _init_rope(self):
326
+ if self.config.rope_scaling is None:
327
+ self.rotary_emb = InternLM2RotaryEmbedding(
328
+ self.head_dim,
329
+ max_position_embeddings=self.max_position_embeddings,
330
+ base=self.config.rope_theta,
331
+ )
332
+ else:
333
+ scaling_type = self.config.rope_scaling['type']
334
+ scaling_factor = self.config.rope_scaling['factor']
335
+ if scaling_type == 'dynamic':
336
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
337
+ self.head_dim,
338
+ max_position_embeddings=self.max_position_embeddings,
339
+ base=self.config.rope_theta,
340
+ scaling_factor=scaling_factor,
341
+ )
342
+ elif scaling_type == 'linear':
343
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
344
+ self.head_dim,
345
+ max_position_embeddings=self.max_position_embeddings,
346
+ base=self.config.rope_theta,
347
+ scaling_factor=scaling_factor,
348
+ )
349
+ else:
350
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
351
+ return self.rotary_emb
352
+
353
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
354
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
355
+
356
+ def forward(
357
+ self,
358
+ hidden_states: torch.Tensor,
359
+ attention_mask: Optional[torch.Tensor] = None,
360
+ position_ids: Optional[torch.LongTensor] = None,
361
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
362
+ output_attentions: bool = False,
363
+ use_cache: bool = False,
364
+ **kwargs,
365
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
366
+ if 'padding_mask' in kwargs:
367
+ warnings.warn(
368
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
369
+ 'Please make sure use `attention_mask` instead.`'
370
+ )
371
+
372
+ bsz, q_len, _ = hidden_states.size()
373
+
374
+ qkv_states = self.wqkv(hidden_states)
375
+
376
+ qkv_states = rearrange(
377
+ qkv_states,
378
+ 'b q (h gs d) -> b q h gs d',
379
+ gs=2 + self.num_key_value_groups,
380
+ d=self.head_dim,
381
+ )
382
+
383
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
384
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
385
+ key_states = qkv_states[..., -2, :]
386
+ value_states = qkv_states[..., -1, :]
387
+
388
+ query_states = query_states.transpose(1, 2)
389
+ key_states = key_states.transpose(1, 2)
390
+ value_states = value_states.transpose(1, 2)
391
+
392
+ kv_seq_len = key_states.shape[-2]
393
+ if past_key_value is not None:
394
+ kv_seq_len += past_key_value[0].shape[-2]
395
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
396
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
397
+
398
+ if past_key_value is not None:
399
+ # reuse k, v, self_attention
400
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
401
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
402
+
403
+ past_key_value = (key_states, value_states) if use_cache else None
404
+
405
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
406
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
407
+
408
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
409
+
410
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
411
+ raise ValueError(
412
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
413
+ f' {attn_weights.size()}'
414
+ )
415
+
416
+ if attention_mask is not None:
417
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
418
+ raise ValueError(
419
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
420
+ )
421
+ attn_weights = attn_weights + attention_mask
422
+
423
+ # upcast attention to fp32
424
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
425
+ attn_output = torch.matmul(attn_weights, value_states)
426
+
427
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
428
+ raise ValueError(
429
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
430
+ f' {attn_output.size()}'
431
+ )
432
+
433
+ attn_output = attn_output.transpose(1, 2).contiguous()
434
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
435
+
436
+ attn_output = self.wo(attn_output)
437
+
438
+ if not output_attentions:
439
+ attn_weights = None
440
+
441
+ return attn_output, attn_weights, past_key_value
442
+
443
+
444
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
445
+ class InternLM2FlashAttention2(InternLM2Attention):
446
+ """
447
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
448
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
449
+ flash attention and deal with padding tokens in case the input contains any of them.
450
+ """
451
+
452
+ def forward(
453
+ self,
454
+ hidden_states: torch.Tensor,
455
+ attention_mask: Optional[torch.LongTensor] = None,
456
+ position_ids: Optional[torch.LongTensor] = None,
457
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
458
+ phantom_position: torch.BoolTensor = None,
459
+ output_attentions: bool = False,
460
+ use_cache: bool = False,
461
+ **kwargs,
462
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
463
+ # InternLM2FlashAttention2 attention does not support output_attentions
464
+ if 'padding_mask' in kwargs:
465
+ warnings.warn(
466
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
467
+ 'Please make sure use `attention_mask` instead.`'
468
+ )
469
+
470
+ # overwrite attention_mask with padding_mask
471
+ attention_mask = kwargs.pop('padding_mask')
472
+
473
+ output_attentions = False
474
+
475
+ bsz, q_len, _ = hidden_states.size()
476
+
477
+ qkv_states = self.wqkv(hidden_states)
478
+
479
+ qkv_states = rearrange(
480
+ qkv_states,
481
+ 'b q (h gs d) -> b q h gs d',
482
+ gs=2 + self.num_key_value_groups,
483
+ d=self.head_dim,
484
+ )
485
+
486
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
487
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
488
+ key_states = qkv_states[..., -2, :]
489
+ value_states = qkv_states[..., -1, :]
490
+
491
+ query_states = query_states.transpose(1, 2)
492
+ key_states = key_states.transpose(1, 2)
493
+ value_states = value_states.transpose(1, 2)
494
+
495
+ kv_seq_len = key_states.shape[-2]
496
+ if past_key_value is not None:
497
+ kv_seq_len += past_key_value[0].shape[-2]
498
+
499
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
500
+
501
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
502
+
503
+ if past_key_value is not None:
504
+ # reuse k, v, self_attention
505
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
506
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
507
+
508
+ past_key_value = (key_states, value_states) if use_cache else None
509
+
510
+ query_states = query_states.transpose(1, 2)
511
+ key_states = key_states.transpose(1, 2)
512
+ value_states = value_states.transpose(1, 2)
513
+
514
+ attn_output = self._flash_attention_forward(
515
+ query_states, key_states, value_states, attention_mask, q_len, phantom_position
516
+ )
517
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
518
+ attn_output = self.wo(attn_output)
519
+
520
+ if not output_attentions:
521
+ attn_weights = None
522
+
523
+ return attn_output, attn_weights, past_key_value
524
+
525
+ def _flash_attention_forward(
526
+ self, query_states, key_states, value_states, attention_mask, query_length, phantom_position, dropout=0.0, softmax_scale=None,
527
+ ):
528
+ """
529
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
530
+ first unpad the input, then computes the attention scores and pad the final attention scores.
531
+
532
+ Args:
533
+ query_states (`torch.Tensor`):
534
+ Input query states to be passed to Flash Attention API
535
+ key_states (`torch.Tensor`):
536
+ Input key states to be passed to Flash Attention API
537
+ value_states (`torch.Tensor`):
538
+ Input value states to be passed to Flash Attention API
539
+ attention_mask (`torch.Tensor`):
540
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
541
+ position of padding tokens and 1 for the position of non-padding tokens.
542
+ dropout (`int`, *optional*):
543
+ Attention dropout
544
+ softmax_scale (`float`, *optional*):
545
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
546
+ """
547
+
548
+ """
549
+ Phantom
550
+ """
551
+ if self.turn_on_phantom:
552
+
553
+ # [Important] softmax_scale
554
+ softmax_scale = 1 / math.sqrt(query_states.shape[-1])
555
+
556
+ query_states_phantom = []
557
+ key_states_phantom = []
558
+ value_states_phantom = []
559
+ for index, pos in enumerate(phantom_position):
560
+ if query_states.shape[1] > 1:
561
+ query_states_phantom.append(query_states[index][pos])
562
+ key_states_phantom.append(key_states[index][pos])
563
+ value_states_phantom.append(value_states[index][pos])
564
+
565
+ # saving phantom qkv for inference
566
+ self.query_states_phantom = query_states_phantom
567
+ self.key_states_phantom = key_states_phantom
568
+ self.value_states_phantom = value_states_phantom
569
+
570
+ # phantom qkv: list to tensor
571
+ query_states_phantom = torch.stack(self.query_states_phantom)
572
+ key_states_phantom = torch.stack(self.key_states_phantom)
573
+ value_states_phantom = torch.stack(self.value_states_phantom)
574
+
575
+ # phantom qkv: 1 -> N (sequence)
576
+ query_states_phantom = self.xattn_query_phantom(q=query_states, k=query_states_phantom, v=query_states_phantom)
577
+ key_states_phantom = self.xattn_key_phantom(q=key_states, k=key_states_phantom, v=key_states_phantom)
578
+ value_states_phantom = self.xattn_value_phantom(q=value_states, k=value_states_phantom, v=value_states_phantom, is_residual=True)
579
+
580
+ # concat original qkv and phantom qkv for hidden-dimension / heads
581
+ query_states = torch.cat([query_states, query_states_phantom], dim=3)
582
+ key_states = torch.cat([key_states, key_states_phantom], dim=3)
583
+ value_states = torch.cat([value_states, value_states_phantom], dim=3)
584
+
585
+ # Contains at least one padding token in the sequence
586
+ causal = self.is_causal and query_length != 1
587
+ if attention_mask is not None:
588
+ batch_size = query_states.shape[0]
589
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
590
+ query_states, key_states, value_states, attention_mask, query_length
591
+ )
592
+
593
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
594
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
595
+
596
+ attn_output_unpad = flash_attn_varlen_func(
597
+ query_states,
598
+ key_states,
599
+ value_states,
600
+ cu_seqlens_q=cu_seqlens_q,
601
+ cu_seqlens_k=cu_seqlens_k,
602
+ max_seqlen_q=max_seqlen_in_batch_q,
603
+ max_seqlen_k=max_seqlen_in_batch_k,
604
+ dropout_p=dropout,
605
+ softmax_scale=softmax_scale,
606
+ causal=causal,
607
+ )
608
+
609
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
610
+ else:
611
+ attn_output = flash_attn_func(
612
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
613
+ )
614
+
615
+ """
616
+ Phantom
617
+ """
618
+ if self.turn_on_phantom:
619
+ half_dim = attn_output.shape[-1] // 2
620
+ half1_o = attn_output[...,:half_dim]
621
+ half2_o = attn_output[...,half_dim:]
622
+ weight1 = self.gating_phantom_1(half1_o)
623
+ weight2 = self.gating_phantom_2(half2_o)
624
+ weight_norm = weight1.exp() / (weight1.exp() + weight2.exp())
625
+ attn_output = weight_norm * half1_o + (1-weight_norm) * half2_o
626
+ return attn_output
627
+
628
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
629
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
630
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
631
+
632
+ key_layer = index_first_axis(
633
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
634
+ )
635
+ value_layer = index_first_axis(
636
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
637
+ )
638
+
639
+ if query_length == kv_seq_len:
640
+ query_layer = index_first_axis(
641
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
642
+ )
643
+ cu_seqlens_q = cu_seqlens_k
644
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
645
+ indices_q = indices_k
646
+ elif query_length == 1:
647
+ max_seqlen_in_batch_q = 1
648
+ cu_seqlens_q = torch.arange(
649
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
650
+ ) # There is a memcpy here, that is very bad.
651
+ indices_q = cu_seqlens_q[:-1]
652
+ query_layer = query_layer.squeeze(1)
653
+ else:
654
+ # The -q_len: slice assumes left padding.
655
+ attention_mask = attention_mask[:, -query_length:]
656
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
657
+
658
+ return (
659
+ query_layer,
660
+ key_layer,
661
+ value_layer,
662
+ indices_q.to(torch.int64),
663
+ (cu_seqlens_q, cu_seqlens_k),
664
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
665
+ )
666
+
667
+
668
+ INTERNLM2_ATTENTION_CLASSES = {
669
+ 'eager': InternLM2Attention,
670
+ 'flash_attention_2': InternLM2FlashAttention2,
671
+ }
672
+
673
+
674
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
675
+ class InternLM2DecoderLayer(nn.Module):
676
+ def __init__(self, config: InternLM2Config):
677
+ super().__init__()
678
+ self.hidden_size = config.hidden_size
679
+
680
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
681
+
682
+ self.feed_forward = InternLM2MLP(config)
683
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
684
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
685
+
686
+ def forward(
687
+ self,
688
+ hidden_states: torch.Tensor,
689
+ attention_mask: Optional[torch.Tensor] = None,
690
+ position_ids: Optional[torch.LongTensor] = None,
691
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
692
+ phantom_position: torch.BoolTensor = None,
693
+ output_attentions: Optional[bool] = False,
694
+ use_cache: Optional[bool] = False,
695
+ **kwargs,
696
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
697
+ """
698
+ Args:
699
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
700
+ attention_mask (`torch.FloatTensor`, *optional*):
701
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
702
+ query_sequence_length, key_sequence_length)` if default attention is used.
703
+ output_attentions (`bool`, *optional*):
704
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
705
+ returned tensors for more detail.
706
+ use_cache (`bool`, *optional*):
707
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
708
+ (see `past_key_values`).
709
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
710
+ """
711
+ if 'padding_mask' in kwargs:
712
+ warnings.warn(
713
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
714
+ 'Please make sure use `attention_mask` instead.`'
715
+ )
716
+
717
+ residual = hidden_states
718
+
719
+ hidden_states = self.attention_norm(hidden_states)
720
+
721
+ # Self Attention
722
+ hidden_states, self_attn_weights, present_key_value = self.attention(
723
+ hidden_states=hidden_states,
724
+ attention_mask=attention_mask,
725
+ position_ids=position_ids,
726
+ past_key_value=past_key_value,
727
+ phantom_position=phantom_position,
728
+ output_attentions=output_attentions,
729
+ use_cache=use_cache,
730
+ **kwargs,
731
+ )
732
+ hidden_states = residual + hidden_states
733
+
734
+ # Fully Connected
735
+ residual = hidden_states
736
+ hidden_states = self.ffn_norm(hidden_states)
737
+ hidden_states = self.feed_forward(hidden_states)
738
+ hidden_states = residual + hidden_states
739
+
740
+ outputs = (hidden_states,)
741
+
742
+ if output_attentions:
743
+ outputs += (self_attn_weights,)
744
+
745
+ if use_cache:
746
+ outputs += (present_key_value,)
747
+
748
+ return outputs
749
+
750
+
751
+ InternLM2_START_DOCSTRING = r"""
752
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
753
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
754
+ etc.)
755
+
756
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
757
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
758
+ and behavior.
759
+
760
+ Parameters:
761
+ config ([`InternLM2Config`]):
762
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
763
+ load the weights associated with the model, only the configuration. Check out the
764
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
765
+ """
766
+
767
+
768
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
769
+ @add_start_docstrings(
770
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
771
+ InternLM2_START_DOCSTRING,
772
+ )
773
+ class InternLM2PreTrainedModel(PreTrainedModel):
774
+ config_class = InternLM2Config
775
+ base_model_prefix = 'model'
776
+ supports_gradient_checkpointing = True
777
+ _no_split_modules = ['InternLM2DecoderLayer']
778
+ _skip_keys_device_placement = 'past_key_values'
779
+ _supports_flash_attn_2 = True
780
+
781
+ def _init_weights(self, module):
782
+ std = self.config.initializer_range
783
+ if isinstance(module, nn.Linear):
784
+ module.weight.data.normal_(mean=0.0, std=std)
785
+ if module.bias is not None:
786
+ module.bias.data.zero_()
787
+ elif isinstance(module, nn.Embedding):
788
+ module.weight.data.normal_(mean=0.0, std=std)
789
+ if module.padding_idx is not None:
790
+ module.weight.data[module.padding_idx].zero_()
791
+
792
+
793
+ InternLM2_INPUTS_DOCSTRING = r"""
794
+ Args:
795
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
796
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
797
+ it.
798
+
799
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
800
+ [`PreTrainedTokenizer.__call__`] for details.
801
+
802
+ [What are input IDs?](../glossary#input-ids)
803
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
804
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
805
+
806
+ - 1 for tokens that are **not masked**,
807
+ - 0 for tokens that are **masked**.
808
+
809
+ [What are attention masks?](../glossary#attention-mask)
810
+
811
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
812
+ [`PreTrainedTokenizer.__call__`] for details.
813
+
814
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
815
+ `past_key_values`).
816
+
817
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
818
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
819
+ information on the default strategy.
820
+
821
+ - 1 indicates the head is **not masked**,
822
+ - 0 indicates the head is **masked**.
823
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
824
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
825
+ config.n_positions - 1]`.
826
+
827
+ [What are position IDs?](../glossary#position-ids)
828
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
829
+ when `config.use_cache=True`):
830
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
831
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
832
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
833
+
834
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
835
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
836
+
837
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
838
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
839
+ of shape `(batch_size, sequence_length)`.
840
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
841
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
842
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
843
+ model's internal embedding lookup matrix.
844
+ use_cache (`bool`, *optional*):
845
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
846
+ `past_key_values`).
847
+ output_attentions (`bool`, *optional*):
848
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
849
+ tensors for more detail.
850
+ output_hidden_states (`bool`, *optional*):
851
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
852
+ more detail.
853
+ return_dict (`bool`, *optional*):
854
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
855
+ """
856
+
857
+
858
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
859
+ @add_start_docstrings(
860
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
861
+ InternLM2_START_DOCSTRING,
862
+ )
863
+ class InternLM2Model(InternLM2PreTrainedModel):
864
+ """
865
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
866
+
867
+ Args:
868
+ config: InternLM2Config
869
+ """
870
+
871
+ _auto_class = 'AutoModel'
872
+
873
+ def __init__(self, config: InternLM2Config):
874
+ super().__init__(config)
875
+ self.padding_idx = config.pad_token_id
876
+ self.vocab_size = config.vocab_size
877
+ self.config = config
878
+ if not has_flash_attn:
879
+ self.config.attn_implementation = 'eager'
880
+ print('Warning: Flash attention is not available, using eager attention instead.')
881
+
882
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
883
+
884
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
885
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
886
+
887
+ self.gradient_checkpointing = False
888
+ # Initialize weights and apply final processing
889
+ self.post_init()
890
+
891
+ def get_input_embeddings(self):
892
+ return self.tok_embeddings
893
+
894
+ def set_input_embeddings(self, value):
895
+ self.tok_embeddings = value
896
+
897
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
898
+ # create causal mask
899
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
900
+ combined_attention_mask = None
901
+ if input_shape[-1] > 1:
902
+ combined_attention_mask = _make_causal_mask(
903
+ input_shape,
904
+ inputs_embeds.dtype,
905
+ device=inputs_embeds.device,
906
+ past_key_values_length=past_key_values_length,
907
+ )
908
+
909
+ if attention_mask is not None:
910
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
911
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
912
+ inputs_embeds.device
913
+ )
914
+ combined_attention_mask = (
915
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
916
+ )
917
+
918
+ return combined_attention_mask
919
+
920
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
921
+ def forward(
922
+ self,
923
+ input_ids: torch.LongTensor = None,
924
+ attention_mask: Optional[torch.Tensor] = None,
925
+ position_ids: Optional[torch.LongTensor] = None,
926
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
927
+ phantom_position: torch.BoolTensor = None,
928
+ inputs_embeds: Optional[torch.FloatTensor] = None,
929
+ use_cache: Optional[bool] = None,
930
+ output_attentions: Optional[bool] = None,
931
+ output_hidden_states: Optional[bool] = None,
932
+ return_dict: Optional[bool] = None,
933
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
934
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
935
+ output_hidden_states = (
936
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
937
+ )
938
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
939
+
940
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
941
+
942
+ if self.config.attn_implementation == 'flash_attention_2':
943
+ _import_flash_attn()
944
+
945
+ # retrieve input_ids and inputs_embeds
946
+ if input_ids is not None and inputs_embeds is not None:
947
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
948
+ elif input_ids is not None:
949
+ batch_size, seq_length = input_ids.shape[:2]
950
+ elif inputs_embeds is not None:
951
+ batch_size, seq_length = inputs_embeds.shape[:2]
952
+ else:
953
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
954
+
955
+ seq_length_with_past = seq_length
956
+ past_key_values_length = 0
957
+ if past_key_values is not None:
958
+ past_key_values_length = past_key_values[0][0].shape[2]
959
+ seq_length_with_past = seq_length_with_past + past_key_values_length
960
+
961
+ if position_ids is None:
962
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
963
+ position_ids = torch.arange(
964
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
965
+ )
966
+ position_ids = position_ids.unsqueeze(0)
967
+
968
+ if inputs_embeds is None:
969
+ inputs_embeds = self.tok_embeddings(input_ids)
970
+
971
+ if self.config.attn_implementation == 'flash_attention_2':
972
+ # 2d mask is passed through the layers
973
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
974
+ else:
975
+ if attention_mask is None:
976
+ attention_mask = torch.ones(
977
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
978
+ )
979
+ attention_mask = self._prepare_decoder_attention_mask(
980
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
981
+ )
982
+
983
+ # embed positions
984
+ hidden_states = inputs_embeds
985
+
986
+ if self.gradient_checkpointing and self.training:
987
+ if use_cache:
988
+ logger.warning_once(
989
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
990
+ )
991
+ use_cache = False
992
+
993
+ # decoder layers
994
+ all_hidden_states = () if output_hidden_states else None
995
+ all_self_attns = () if output_attentions else None
996
+ next_decoder_cache = () if use_cache else None
997
+
998
+ for idx, decoder_layer in enumerate(self.layers):
999
+ if output_hidden_states:
1000
+ all_hidden_states += (hidden_states,)
1001
+
1002
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1003
+
1004
+ if self.gradient_checkpointing and self.training:
1005
+
1006
+ def create_custom_forward(module):
1007
+ def custom_forward(*inputs):
1008
+ # None for past_key_value
1009
+ return module(*inputs, output_attentions, None)
1010
+
1011
+ return custom_forward
1012
+
1013
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1014
+ create_custom_forward(decoder_layer),
1015
+ hidden_states,
1016
+ attention_mask,
1017
+ position_ids,
1018
+ None,
1019
+ phantom_position,
1020
+ )
1021
+ else:
1022
+ layer_outputs = decoder_layer(
1023
+ hidden_states,
1024
+ attention_mask=attention_mask,
1025
+ position_ids=position_ids,
1026
+ past_key_value=past_key_value,
1027
+ phantom_position=phantom_position,
1028
+ output_attentions=output_attentions,
1029
+ use_cache=use_cache,
1030
+ )
1031
+
1032
+ hidden_states = layer_outputs[0]
1033
+
1034
+ if use_cache:
1035
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1036
+
1037
+ if output_attentions:
1038
+ all_self_attns += (layer_outputs[1],)
1039
+
1040
+ hidden_states = self.norm(hidden_states)
1041
+
1042
+ # add hidden states from the last decoder layer
1043
+ if output_hidden_states:
1044
+ all_hidden_states += (hidden_states,)
1045
+
1046
+ next_cache = next_decoder_cache if use_cache else None
1047
+ if not return_dict:
1048
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1049
+ return BaseModelOutputWithPast(
1050
+ last_hidden_state=hidden_states,
1051
+ past_key_values=next_cache,
1052
+ hidden_states=all_hidden_states,
1053
+ attentions=all_self_attns,
1054
+ )
1055
+
1056
+
1057
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
1058
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1059
+ _auto_class = 'AutoModelForCausalLM'
1060
+
1061
+ _tied_weights_keys = ['output.weight']
1062
+
1063
+ def __init__(self, config):
1064
+ super().__init__(config)
1065
+ self.model = InternLM2Model(config)
1066
+ self.vocab_size = config.vocab_size
1067
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1068
+
1069
+ # Initialize weights and apply final processing
1070
+ self.post_init()
1071
+
1072
+ def get_input_embeddings(self):
1073
+ return self.model.tok_embeddings
1074
+
1075
+ def set_input_embeddings(self, value):
1076
+ self.model.tok_embeddings = value
1077
+
1078
+ def get_output_embeddings(self):
1079
+ return self.output
1080
+
1081
+ def set_output_embeddings(self, new_embeddings):
1082
+ self.output = new_embeddings
1083
+
1084
+ def set_decoder(self, decoder):
1085
+ self.model = decoder
1086
+
1087
+ def get_decoder(self):
1088
+ return self.model
1089
+
1090
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1091
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1092
+ def forward(
1093
+ self,
1094
+ input_ids: torch.LongTensor = None,
1095
+ attention_mask: Optional[torch.Tensor] = None,
1096
+ position_ids: Optional[torch.LongTensor] = None,
1097
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1098
+ phantom_position: torch.BoolTensor = None,
1099
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1100
+ labels: Optional[torch.LongTensor] = None,
1101
+ use_cache: Optional[bool] = None,
1102
+ output_attentions: Optional[bool] = None,
1103
+ output_hidden_states: Optional[bool] = None,
1104
+ return_dict: Optional[bool] = None,
1105
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1106
+ r"""
1107
+ Args:
1108
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1109
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1110
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1111
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1112
+
1113
+ Returns:
1114
+
1115
+ Example:
1116
+
1117
+ ```python
1118
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1119
+
1120
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1121
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1122
+
1123
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1124
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1125
+
1126
+ >>> # Generate
1127
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1128
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1129
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1130
+ ```"""
1131
+
1132
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1133
+ output_hidden_states = (
1134
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1135
+ )
1136
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1137
+
1138
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1139
+ outputs = self.model(
1140
+ input_ids=input_ids,
1141
+ attention_mask=attention_mask,
1142
+ position_ids=position_ids,
1143
+ past_key_values=past_key_values,
1144
+ phantom_position=phantom_position,
1145
+ inputs_embeds=inputs_embeds,
1146
+ use_cache=use_cache,
1147
+ output_attentions=output_attentions,
1148
+ output_hidden_states=output_hidden_states,
1149
+ return_dict=return_dict,
1150
+ )
1151
+
1152
+ hidden_states = outputs[0]
1153
+ logits = self.output(hidden_states)
1154
+ logits = logits.float()
1155
+
1156
+ loss = None
1157
+ if labels is not None:
1158
+ # Shift so that tokens < n predict n
1159
+ shift_logits = logits[..., :-1, :].contiguous()
1160
+ shift_labels = labels[..., 1:].contiguous()
1161
+ # Flatten the tokens
1162
+ loss_fct = CrossEntropyLoss()
1163
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1164
+ shift_labels = shift_labels.view(-1)
1165
+ # Enable model parallelism
1166
+ shift_labels = shift_labels.to(shift_logits.device)
1167
+ loss = loss_fct(shift_logits, shift_labels)
1168
+
1169
+ if not return_dict:
1170
+ output = (logits,) + outputs[1:]
1171
+ return (loss,) + output if loss is not None else output
1172
+
1173
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1174
+ output = CausalLMOutputWithPast(
1175
+ loss=loss,
1176
+ logits=logits,
1177
+ past_key_values=outputs.past_key_values,
1178
+ hidden_states=outputs.hidden_states,
1179
+ attentions=outputs.attentions,
1180
+ )
1181
+ output['logits'] = output['logits'].to(device)
1182
+ return output
1183
+
1184
+ def prepare_inputs_for_generation(
1185
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1186
+ ):
1187
+ if past_key_values is not None:
1188
+ past_length = past_key_values[0][0].shape[2]
1189
+
1190
+ # Some generation methods already pass only the last input ID
1191
+ if input_ids.shape[1] > past_length:
1192
+ remove_prefix_length = past_length
1193
+ else:
1194
+ # Default to old behavior: keep only final ID
1195
+ remove_prefix_length = input_ids.shape[1] - 1
1196
+
1197
+ input_ids = input_ids[:, remove_prefix_length:]
1198
+
1199
+ position_ids = kwargs.get('position_ids', None)
1200
+ if attention_mask is not None and position_ids is None:
1201
+ # create position_ids on the fly for batch generation
1202
+ position_ids = attention_mask.long().cumsum(-1) - 1
1203
+ position_ids.masked_fill_(attention_mask == 0, 1)
1204
+ if past_key_values:
1205
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1206
+
1207
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1208
+ if inputs_embeds is not None and past_key_values is None:
1209
+ model_inputs = {'inputs_embeds': inputs_embeds}
1210
+ else:
1211
+ model_inputs = {'input_ids': input_ids}
1212
+
1213
+ model_inputs.update(
1214
+ {
1215
+ 'position_ids': position_ids,
1216
+ 'past_key_values': past_key_values,
1217
+ 'phantom_position': kwargs.get('phantom_position'),
1218
+ 'use_cache': kwargs.get('use_cache'),
1219
+ 'attention_mask': attention_mask,
1220
+ }
1221
+ )
1222
+ return model_inputs
1223
+
1224
+ @staticmethod
1225
+ def _reorder_cache(past_key_values, beam_idx):
1226
+ reordered_past = ()
1227
+ for layer_past in past_key_values:
1228
+ reordered_past += (
1229
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1230
+ )
1231
+ return reordered_past
1232
+
1233
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1234
+ if tokenizer.add_bos_token:
1235
+ prompt = ''
1236
+ else:
1237
+ prompt = tokenizer.bos_token
1238
+ if meta_instruction:
1239
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1240
+ for record in history:
1241
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1242
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1243
+ return tokenizer([prompt], return_tensors='pt')
1244
+
1245
+ @torch.no_grad()
1246
+ def chat(
1247
+ self,
1248
+ tokenizer,
1249
+ query: str,
1250
+ history: List[Tuple[str, str]] = [],
1251
+ streamer: Optional[BaseStreamer] = None,
1252
+ max_new_tokens: int = 1024,
1253
+ do_sample: bool = True,
1254
+ temperature: float = 0.8,
1255
+ top_p: float = 0.8,
1256
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1257
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1258
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1259
+ **kwargs,
1260
+ ):
1261
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1262
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1263
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1264
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1265
+ outputs = self.generate(
1266
+ **inputs,
1267
+ streamer=streamer,
1268
+ max_new_tokens=max_new_tokens,
1269
+ do_sample=do_sample,
1270
+ temperature=temperature,
1271
+ top_p=top_p,
1272
+ eos_token_id=eos_token_id,
1273
+ **kwargs,
1274
+ )
1275
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1276
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1277
+ response = response.split('<|im_end|>')[0]
1278
+ history = history + [(query, response)]
1279
+ return response, history
1280
+
1281
+ @torch.no_grad()
1282
+ def stream_chat(
1283
+ self,
1284
+ tokenizer,
1285
+ query: str,
1286
+ history: List[Tuple[str, str]] = [],
1287
+ max_new_tokens: int = 1024,
1288
+ do_sample: bool = True,
1289
+ temperature: float = 0.8,
1290
+ top_p: float = 0.8,
1291
+ **kwargs,
1292
+ ):
1293
+ """
1294
+ Return a generator in format: (response, history)
1295
+ Eg.
1296
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1297
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1298
+ """
1299
+ if BaseStreamer is None:
1300
+ raise ModuleNotFoundError(
1301
+ 'The version of `transformers` is too low. Please make sure '
1302
+ 'that you have installed `transformers>=4.28.0`.'
1303
+ )
1304
+
1305
+ response_queue = queue.Queue(maxsize=20)
1306
+
1307
+ class ChatStreamer(BaseStreamer):
1308
+ def __init__(self, tokenizer) -> None:
1309
+ super().__init__()
1310
+ self.tokenizer = tokenizer
1311
+ self.queue = response_queue
1312
+ self.query = query
1313
+ self.history = history
1314
+ self.response = ''
1315
+ self.cache = []
1316
+ self.received_inputs = False
1317
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1318
+
1319
+ def put(self, value):
1320
+ if len(value.shape) > 1 and value.shape[0] > 1:
1321
+ raise ValueError('ChatStreamer only supports batch size 1')
1322
+ elif len(value.shape) > 1:
1323
+ value = value[0]
1324
+
1325
+ if not self.received_inputs:
1326
+ # The first received value is input_ids, ignore here
1327
+ self.received_inputs = True
1328
+ return
1329
+
1330
+ self.cache.extend(value.tolist())
1331
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1332
+ if token.strip() != '<|im_end|>':
1333
+ self.response = self.response + token
1334
+ history = self.history + [(self.query, self.response)]
1335
+ self.queue.put((self.response, history))
1336
+ self.cache = []
1337
+ else:
1338
+ self.end()
1339
+
1340
+ def end(self):
1341
+ self.queue.put(None)
1342
+
1343
+ def stream_producer():
1344
+ return self.chat(
1345
+ tokenizer=tokenizer,
1346
+ query=query,
1347
+ streamer=ChatStreamer(tokenizer=tokenizer),
1348
+ history=history,
1349
+ max_new_tokens=max_new_tokens,
1350
+ do_sample=do_sample,
1351
+ temperature=temperature,
1352
+ top_p=top_p,
1353
+ **kwargs,
1354
+ )
1355
+
1356
+ def consumer():
1357
+ producer = threading.Thread(target=stream_producer)
1358
+ producer.start()
1359
+ while True:
1360
+ res = response_queue.get()
1361
+ if res is None:
1362
+ return
1363
+ yield res
1364
+
1365
+ return consumer()
1366
+
1367
+
1368
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1369
+ @add_start_docstrings(
1370
+ """
1371
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1372
+
1373
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1374
+ as other causal models (e.g. GPT-2) do.
1375
+
1376
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1377
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1378
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1379
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1380
+ each row of the batch).
1381
+ """,
1382
+ InternLM2_START_DOCSTRING,
1383
+ )
1384
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1385
+ def __init__(self, config):
1386
+ super().__init__(config)
1387
+ self.num_labels = config.num_labels
1388
+ self.model = InternLM2Model(config)
1389
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1390
+
1391
+ # Initialize weights and apply final processing
1392
+ self.post_init()
1393
+
1394
+ def get_input_embeddings(self):
1395
+ return self.model.tok_embeddings
1396
+
1397
+ def set_input_embeddings(self, value):
1398
+ self.model.tok_embeddings = value
1399
+
1400
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1401
+ def forward(
1402
+ self,
1403
+ input_ids: torch.LongTensor = None,
1404
+ attention_mask: Optional[torch.Tensor] = None,
1405
+ position_ids: Optional[torch.LongTensor] = None,
1406
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1407
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1408
+ labels: Optional[torch.LongTensor] = None,
1409
+ use_cache: Optional[bool] = None,
1410
+ output_attentions: Optional[bool] = None,
1411
+ output_hidden_states: Optional[bool] = None,
1412
+ return_dict: Optional[bool] = None,
1413
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1414
+ r"""
1415
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1416
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1417
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1418
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1419
+ """
1420
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1421
+
1422
+ transformer_outputs = self.model(
1423
+ input_ids,
1424
+ attention_mask=attention_mask,
1425
+ position_ids=position_ids,
1426
+ past_key_values=past_key_values,
1427
+ inputs_embeds=inputs_embeds,
1428
+ use_cache=use_cache,
1429
+ output_attentions=output_attentions,
1430
+ output_hidden_states=output_hidden_states,
1431
+ return_dict=return_dict,
1432
+ )
1433
+ hidden_states = transformer_outputs[0]
1434
+ logits = self.score(hidden_states)
1435
+
1436
+ if input_ids is not None:
1437
+ batch_size = input_ids.shape[0]
1438
+ else:
1439
+ batch_size = inputs_embeds.shape[0]
1440
+
1441
+ if self.config.pad_token_id is None and batch_size != 1:
1442
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1443
+ if self.config.pad_token_id is None:
1444
+ sequence_lengths = -1
1445
+ else:
1446
+ if input_ids is not None:
1447
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1448
+ logits.device
1449
+ )
1450
+ else:
1451
+ sequence_lengths = -1
1452
+
1453
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1454
+
1455
+ loss = None
1456
+ if labels is not None:
1457
+ labels = labels.to(logits.device)
1458
+ if self.config.problem_type is None:
1459
+ if self.num_labels == 1:
1460
+ self.config.problem_type = 'regression'
1461
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1462
+ self.config.problem_type = 'single_label_classification'
1463
+ else:
1464
+ self.config.problem_type = 'multi_label_classification'
1465
+
1466
+ if self.config.problem_type == 'regression':
1467
+ loss_fct = MSELoss()
1468
+ if self.num_labels == 1:
1469
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1470
+ else:
1471
+ loss = loss_fct(pooled_logits, labels)
1472
+ elif self.config.problem_type == 'single_label_classification':
1473
+ loss_fct = CrossEntropyLoss()
1474
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1475
+ elif self.config.problem_type == 'multi_label_classification':
1476
+ loss_fct = BCEWithLogitsLoss()
1477
+ loss = loss_fct(pooled_logits, labels)
1478
+ if not return_dict:
1479
+ output = (pooled_logits,) + transformer_outputs[1:]
1480
+ return ((loss,) + output) if loss is not None else output
1481
+
1482
+ return SequenceClassifierOutputWithPast(
1483
+ loss=loss,
1484
+ logits=pooled_logits,
1485
+ past_key_values=transformer_outputs.past_key_values,
1486
+ hidden_states=transformer_outputs.hidden_states,
1487
+ attentions=transformer_outputs.attentions,
1488
+ )
model/arch_1_8b/modeling_phantom.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch.utils.checkpoint
4
+ from torch import nn
5
+ from transformers import GenerationConfig
6
+ from transformers.modeling_outputs import CausalLMOutputWithPast
7
+ from transformers.modeling_utils import PreTrainedModel
8
+
9
+ from .configuration_phantom import PhantomConfig
10
+ from .modeling_intern_vit import InternVisionModel
11
+ from .modeling_internlm2 import InternLM2ForCausalLM
12
+
13
+ from utils.utils import *
14
+
15
+ class PhantomForCausalLM(PreTrainedModel):
16
+ config_class = PhantomConfig
17
+ main_input_name = 'pixel_values'
18
+ _supports_flash_attn_2 = True
19
+ _no_split_modules = ['InternVisionModel', 'InternLM2DecoderLayer']
20
+
21
+ def __init__(self, config: PhantomConfig):
22
+ super().__init__(config)
23
+ image_size = config.force_image_size or config.vision_config.image_size
24
+ patch_size = config.vision_config.patch_size
25
+ self.patch_size = patch_size
26
+ self.template = config.template
27
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
28
+ self.downsample_ratio = config.downsample_ratio
29
+
30
+ self.vision_model = InternVisionModel(config.vision_config)
31
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
32
+
33
+ vit_hidden_size = config.vision_config.hidden_size
34
+ llm_hidden_size = config.llm_config.hidden_size
35
+
36
+ self.vision_proj = nn.Sequential(
37
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
38
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
39
+ nn.GELU(),
40
+ nn.Linear(llm_hidden_size, llm_hidden_size)
41
+ )
42
+
43
+ # prompt rule
44
+ self.prompt_rule = {
45
+ "system_start": "<|im_start|>system\n",
46
+ "system_end": "<|im_end|>",
47
+ "user_start": "<|im_start|>user\n",
48
+ "user_end": "<|im_end|>",
49
+ "assistant_start": "<|im_start|>assistant\n",
50
+ "assistant_end": "<|im_end|>",
51
+ "test_start": "assistant\n",
52
+ "test_end": "<|im_end|>",
53
+ "split": "",
54
+ }
55
+
56
+ def eval_process(
57
+ self,
58
+ inputs,
59
+ tokenizer,
60
+ data,
61
+ device,
62
+ ):
63
+ batched_image=[]
64
+ batched_qa_prompt=[]
65
+ batched_phantom_position = []
66
+ for _input in inputs:
67
+
68
+ # making image prompt
69
+ if 'image' in _input.keys() and _input['image'] != None:
70
+ process_image = dynamic_preprocess(_input['image'].to(device))
71
+ dynamic_process_image = torch.stack([dynamic_transform(image) for image in process_image]).to(device)
72
+ img_token_number = dynamic_process_image.shape[0] * 256
73
+ batched_image.append(dynamic_process_image)
74
+
75
+ # make question and answer
76
+ question = _input['question']
77
+
78
+ # make instruction (qa pair) and label
79
+ qa_prompt = make_instruction(question, data, self.prompt_rule)
80
+
81
+ # adding image special tokens to question
82
+ if 'image' in _input.keys():
83
+ qa_prompt = qa_prompt.replace('<image>', '<img><IMG_CONTEXT></img>')
84
+
85
+ # add bundle image tokens if it has <image> token
86
+ qa_prompt = add_bundle_tokens(qa_prompt, '<IMG_CONTEXT>', img_token_number)
87
+
88
+ # phantom_position
89
+ label = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].to(device)
90
+ phantom_position = torch.zeros_like(label)
91
+ phantom_position[0] = 1
92
+
93
+ # batched processing
94
+ batched_qa_prompt.append(qa_prompt)
95
+ batched_phantom_position.append(phantom_position.flip(dims=[0]))
96
+
97
+ '''For Final Outputs'''
98
+ qa_prompts = tokenizer(batched_qa_prompt, padding='longest', return_tensors="pt", add_special_tokens=False)
99
+
100
+ # [1] input_ids
101
+ input_ids = qa_prompts.input_ids.to(device)
102
+
103
+ # [2] attention_mask
104
+ attention_mask = qa_prompts.attention_mask.to(device)
105
+
106
+ # [3] Phantom Position
107
+ batched_phantom_position = torch.nn.utils.rnn.pad_sequence(batched_phantom_position, batch_first=True, padding_value=0).flip(dims=[1]) # padding left
108
+
109
+ if len(batched_image):
110
+ return {"input_ids": input_ids,
111
+ "attention_mask": attention_mask,
112
+ "pixel_values": torch.cat(batched_image, dim=0).to(device),
113
+ "phantom_position": batched_phantom_position.bool()
114
+ }
115
+ else:
116
+ return {"input_ids": input_ids,
117
+ "attention_mask": attention_mask,
118
+ "phantom_position": batched_phantom_position.bool()
119
+ }
120
+
121
+ def extract_feature(self, pixel_values):
122
+ vit_embeds = self.vision_model(
123
+ pixel_values=pixel_values,
124
+ output_hidden_states=False,
125
+ return_dict=True).last_hidden_state
126
+ vit_embeds = vit_embeds[:, 1:, :]
127
+
128
+ h = w = int(vit_embeds.shape[1] ** 0.5)
129
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
130
+ vit_embeds = pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
131
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
132
+ vit_embeds = self.vision_proj(vit_embeds)
133
+ return vit_embeds
134
+
135
+ @torch.no_grad()
136
+ def generate(
137
+ self,
138
+ pixel_values: Optional[torch.FloatTensor] = None,
139
+ input_ids: Optional[torch.FloatTensor] = None,
140
+ attention_mask: Optional[torch.LongTensor] = None,
141
+ phantom_position: torch.BoolTensor = None,
142
+ generation_config: Optional[GenerationConfig] = None,
143
+ output_hidden_states: Optional[bool] = None,
144
+ return_dict: Optional[bool] = None,
145
+ **generate_kwargs,
146
+ ) -> torch.LongTensor:
147
+
148
+ if pixel_values is not None:
149
+ vit_embeds = self.extract_feature(pixel_values.to(torch.bfloat16))
150
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
151
+ B, N, C = input_embeds.shape
152
+ input_embeds = input_embeds.reshape(B * N, C)
153
+
154
+ input_ids = input_ids.reshape(B * N)
155
+ selected = (input_ids == self.config.image_token_index)
156
+ assert selected.sum() != 0
157
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
158
+
159
+ input_embeds = input_embeds.reshape(B, N, C)
160
+ else:
161
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
162
+
163
+ outputs = self.language_model.generate(
164
+ inputs_embeds=input_embeds,
165
+ attention_mask=attention_mask,
166
+ phantom_position=phantom_position,
167
+ generation_config=generation_config,
168
+ output_hidden_states=output_hidden_states,
169
+ return_dict=return_dict,
170
+ use_cache=True,
171
+ pad_token_id=self.config.eos_token_id,
172
+ eos_token_id=self.config.eos_token_id,
173
+ **generate_kwargs,
174
+ )
175
+
176
+ return outputs
model/arch_1_8b/tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
model/arch_3_8b/configuration_intern_vit.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Union
3
+
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class InternVisionConfig(PretrainedConfig):
11
+ r"""
12
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
13
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
14
+
15
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
16
+ documentation from [`PretrainedConfig`] for more information.
17
+
18
+ Args:
19
+ num_channels (`int`, *optional*, defaults to 3):
20
+ Number of color channels in the input images (e.g., 3 for RGB).
21
+ patch_size (`int`, *optional*, defaults to 14):
22
+ The size (resolution) of each patch.
23
+ image_size (`int`, *optional*, defaults to 224):
24
+ The size (resolution) of each image.
25
+ qkv_bias (`bool`, *optional*, defaults to `False`):
26
+ Whether to add a bias to the queries and values in the self-attention layers.
27
+ hidden_size (`int`, *optional*, defaults to 3200):
28
+ Dimensionality of the encoder layers and the pooler layer.
29
+ num_attention_heads (`int`, *optional*, defaults to 25):
30
+ Number of attention heads for each attention layer in the Transformer encoder.
31
+ intermediate_size (`int`, *optional*, defaults to 12800):
32
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
33
+ qk_normalization (`bool`, *optional*, defaults to `True`):
34
+ Whether to normalize the queries and keys in the self-attention layers.
35
+ num_hidden_layers (`int`, *optional*, defaults to 48):
36
+ Number of hidden layers in the Transformer encoder.
37
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
38
+ Whether to use flash attention mechanism.
39
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
40
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
41
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
42
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
43
+ The epsilon used by the layer normalization layers.
44
+ dropout (`float`, *optional*, defaults to 0.0):
45
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
46
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
47
+ Dropout rate for stochastic depth.
48
+ attention_dropout (`float`, *optional*, defaults to 0.0):
49
+ The dropout ratio for the attention probabilities.
50
+ initializer_range (`float`, *optional*, defaults to 0.02):
51
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
52
+ initializer_factor (`float`, *optional*, defaults to 0.1):
53
+ A factor for layer scale.
54
+ """
55
+
56
+ model_type = 'intern_vit_300m'
57
+
58
+ def __init__(
59
+ self,
60
+ num_channels=3,
61
+ patch_size=14,
62
+ image_size=224,
63
+ qkv_bias=False,
64
+ hidden_size=3200,
65
+ num_attention_heads=25,
66
+ intermediate_size=12800,
67
+ qk_normalization=True,
68
+ num_hidden_layers=48,
69
+ use_flash_attn=True,
70
+ hidden_act='gelu',
71
+ norm_type='rms_norm',
72
+ layer_norm_eps=1e-6,
73
+ dropout=0.0,
74
+ drop_path_rate=0.0,
75
+ attention_dropout=0.0,
76
+ initializer_range=0.02,
77
+ initializer_factor=0.1,
78
+ **kwargs,
79
+ ):
80
+ super().__init__(**kwargs)
81
+
82
+ self.hidden_size = hidden_size
83
+ self.intermediate_size = intermediate_size
84
+ self.dropout = dropout
85
+ self.drop_path_rate = drop_path_rate
86
+ self.num_hidden_layers = num_hidden_layers
87
+ self.num_attention_heads = num_attention_heads
88
+ self.num_channels = num_channels
89
+ self.patch_size = patch_size
90
+ self.image_size = image_size
91
+ self.initializer_range = initializer_range
92
+ self.initializer_factor = initializer_factor
93
+ self.attention_dropout = attention_dropout
94
+ self.layer_norm_eps = layer_norm_eps
95
+ self.hidden_act = hidden_act
96
+ self.norm_type = norm_type
97
+ self.qkv_bias = qkv_bias
98
+ self.qk_normalization = qk_normalization
99
+ self.use_flash_attn = use_flash_attn
100
+
101
+ @classmethod
102
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
103
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
104
+
105
+ if 'vision_config' in config_dict:
106
+ config_dict = config_dict['vision_config']
107
+
108
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
109
+ logger.warning(
110
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
111
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
112
+ )
113
+
114
+ return cls.from_dict(config_dict, **kwargs)
model/arch_3_8b/configuration_phantom.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from transformers import LlamaConfig
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ from .configuration_intern_vit import InternVisionConfig
8
+ from .configuration_phi3 import Phi3Config
9
+
10
+ logger = logging.get_logger(__name__)
11
+
12
+
13
+ class PhantomConfig(PretrainedConfig):
14
+ model_type = 'phantom'
15
+ is_composition = True
16
+
17
+ def __init__(
18
+ self,
19
+ vision_config=None,
20
+ llm_config=None,
21
+ use_backbone_lora=0,
22
+ use_llm_lora=0,
23
+ force_image_size=None,
24
+ downsample_ratio=0.5,
25
+ template=None,
26
+ dynamic_image_size=False,
27
+ use_thumbnail=False,
28
+ min_dynamic_patch=1,
29
+ max_dynamic_patch=6,
30
+ **kwargs):
31
+ super().__init__(**kwargs)
32
+
33
+ if vision_config is None:
34
+ vision_config = {}
35
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
36
+
37
+ if llm_config is None:
38
+ llm_config = {}
39
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
40
+
41
+ self.vision_config = InternVisionConfig(**vision_config)
42
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
43
+ self.llm_config = LlamaConfig(**llm_config)
44
+ elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
45
+ self.llm_config = Phi3Config(**llm_config)
46
+ else:
47
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
48
+ self.use_backbone_lora = use_backbone_lora
49
+ self.use_llm_lora = use_llm_lora
50
+ self.force_image_size = force_image_size
51
+ self.downsample_ratio = downsample_ratio
52
+ self.template = template
53
+ self.dynamic_image_size = dynamic_image_size
54
+ self.use_thumbnail = use_thumbnail
55
+ self.min_dynamic_patch = min_dynamic_patch
56
+ self.max_dynamic_patch = max_dynamic_patch
57
+
58
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
59
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
60
+
61
+ def to_dict(self):
62
+ """
63
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
64
+
65
+ Returns:
66
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
67
+ """
68
+ output = copy.deepcopy(self.__dict__)
69
+ output['vision_config'] = self.vision_config.to_dict()
70
+ output['llm_config'] = self.llm_config.to_dict()
71
+ output['model_type'] = self.__class__.model_type
72
+ output['use_backbone_lora'] = self.use_backbone_lora
73
+ output['use_llm_lora'] = self.use_llm_lora
74
+ output['force_image_size'] = self.force_image_size
75
+ output['downsample_ratio'] = self.downsample_ratio
76
+ output['template'] = self.template
77
+ output['dynamic_image_size'] = self.dynamic_image_size
78
+ output['use_thumbnail'] = self.use_thumbnail
79
+ output['min_dynamic_patch'] = self.min_dynamic_patch
80
+ output['max_dynamic_patch'] = self.max_dynamic_patch
81
+
82
+ return output
model/arch_3_8b/configuration_phi3.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License atd
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ Phi-3 model configuration"""
16
+
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ 'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
25
+ 'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
26
+ }
27
+
28
+
29
+ class Phi3Config(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the
34
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32064):
41
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`Phi3Model`].
43
+ hidden_size (`int`, *optional*, defaults to 3072):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 8192):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
60
+ Dropout probability for mlp outputs.
61
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
62
+ The dropout ratio for the embeddings.
63
+ attention_dropout (`float`, *optional*, defaults to 0.0):
64
+ The dropout ratio after computing the attention scores.
65
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
66
+ The non-linear activation function (function or string) in the decoder.
67
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
68
+ The maximum sequence length that this model might ever be used with.
69
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
71
+ original RoPE embeddings when using long scaling.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
75
+ The epsilon value used for the RMSNorm.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`dict`, *optional*):
84
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
85
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
86
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
87
+ divided by the number of attention heads divided by 2.
88
+ bos_token_id (`int`, *optional*, defaults to 1):
89
+ The id of the "beginning-of-sequence" token.
90
+ eos_token_id (`int`, *optional*, defaults to 32000):
91
+ The id of the "end-of-sequence" token.
92
+ pad_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the padding token.
94
+ sliding_window (`int`, *optional*):
95
+ Sliding window attention window size. If `None`, no sliding window is applied.
96
+
97
+ Example:
98
+
99
+ ```python
100
+ >>> from transformers import Phi3Model, Phi3Config
101
+
102
+ >>> # Initializing a Phi-3 style configuration
103
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
104
+
105
+ >>> # Initializing a model from the configuration
106
+ >>> model = Phi3Model(configuration)
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = 'phi3'
113
+ keys_to_ignore_at_inference = ['past_key_values']
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=32064,
118
+ hidden_size=3072,
119
+ intermediate_size=8192,
120
+ num_hidden_layers=32,
121
+ num_attention_heads=32,
122
+ num_key_value_heads=None,
123
+ resid_pdrop=0.0,
124
+ embd_pdrop=0.0,
125
+ attention_dropout=0.0,
126
+ hidden_act='silu',
127
+ max_position_embeddings=4096,
128
+ original_max_position_embeddings=4096,
129
+ initializer_range=0.02,
130
+ rms_norm_eps=1e-5,
131
+ use_cache=True,
132
+ tie_word_embeddings=False,
133
+ rope_theta=10000.0,
134
+ rope_scaling=None,
135
+ bos_token_id=1,
136
+ eos_token_id=32000,
137
+ pad_token_id=32000,
138
+ sliding_window=None,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.hidden_size = hidden_size
143
+ self.intermediate_size = intermediate_size
144
+ self.num_hidden_layers = num_hidden_layers
145
+ self.num_attention_heads = num_attention_heads
146
+
147
+ if num_key_value_heads is None:
148
+ num_key_value_heads = num_attention_heads
149
+
150
+ self.num_key_value_heads = num_key_value_heads
151
+ self.resid_pdrop = resid_pdrop
152
+ self.embd_pdrop = embd_pdrop
153
+ self.attention_dropout = attention_dropout
154
+ self.hidden_act = hidden_act
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.original_max_position_embeddings = original_max_position_embeddings
157
+ self.initializer_range = initializer_range
158
+ self.rms_norm_eps = rms_norm_eps
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self._rope_scaling_validation()
163
+ self.sliding_window = sliding_window
164
+
165
+ super().__init__(
166
+ bos_token_id=bos_token_id,
167
+ eos_token_id=eos_token_id,
168
+ pad_token_id=pad_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ def _rope_scaling_validation(self):
174
+ """
175
+ Validate the `rope_scaling` configuration.
176
+ """
177
+ if self.rope_scaling is None:
178
+ return
179
+
180
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
181
+ raise ValueError(
182
+ '`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
183
+ f'got {self.rope_scaling}'
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get('type', None)
186
+ rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
187
+ rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
188
+ if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
189
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
190
+ if not (
191
+ isinstance(rope_scaling_short_factor, list)
192
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
193
+ ):
194
+ raise ValueError(
195
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
196
+ )
197
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
198
+ raise ValueError(
199
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
200
+ )
201
+ if not (
202
+ isinstance(rope_scaling_long_factor, list)
203
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
204
+ ):
205
+ raise ValueError(
206
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
207
+ )
208
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
209
+ raise ValueError(
210
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
211
+ )
model/arch_3_8b/modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ import torch.utils.checkpoint
6
+ from einops import rearrange
7
+ from timm.models.layers import DropPath
8
+ from torch import nn
9
+ from transformers.activations import ACT2FN
10
+ from transformers.modeling_outputs import (BaseModelOutput,
11
+ BaseModelOutputWithPooling)
12
+ from transformers.modeling_utils import PreTrainedModel
13
+ from transformers.utils import logging
14
+
15
+ from .configuration_intern_vit import InternVisionConfig
16
+
17
+ try:
18
+ try: # v1
19
+ from flash_attn.flash_attn_interface import \
20
+ flash_attn_unpadded_qkvpacked_func
21
+ except: # v2
22
+ from flash_attn.flash_attn_interface import \
23
+ flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
24
+
25
+ from flash_attn.bert_padding import pad_input, unpad_input
26
+
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_unpadded_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_unpadded_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = False
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
model/arch_3_8b/modeling_phantom.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch.utils.checkpoint
4
+ from torch import nn
5
+ from transformers import GenerationConfig
6
+ from transformers.modeling_outputs import CausalLMOutputWithPast
7
+ from transformers.modeling_utils import PreTrainedModel
8
+
9
+ from .configuration_phantom import PhantomConfig
10
+ from .modeling_intern_vit import InternVisionModel
11
+ from .modeling_phi3 import Phi3ForCausalLM
12
+
13
+ from utils.utils import *
14
+
15
+ class PhantomForCausalLM(PreTrainedModel):
16
+ config_class = PhantomConfig
17
+ main_input_name = 'pixel_values'
18
+ _supports_flash_attn_2 = True
19
+ _no_split_modules = ['InternVisionModel', 'Phi3DecoderLayer']
20
+
21
+ def __init__(self, config: PhantomConfig):
22
+ super().__init__(config)
23
+ image_size = config.force_image_size or config.vision_config.image_size
24
+ patch_size = config.vision_config.patch_size
25
+ self.patch_size = patch_size
26
+ self.template = config.template
27
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
28
+ self.downsample_ratio = config.downsample_ratio
29
+
30
+ self.vision_model = InternVisionModel(config.vision_config)
31
+ self.language_model = Phi3ForCausalLM(config.llm_config)
32
+
33
+ vit_hidden_size = config.vision_config.hidden_size
34
+ llm_hidden_size = config.llm_config.hidden_size
35
+
36
+ self.vision_proj = nn.Sequential(
37
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
38
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
39
+ nn.GELU(),
40
+ nn.Linear(llm_hidden_size, llm_hidden_size)
41
+ )
42
+
43
+ # prompt rule
44
+ self.prompt_rule = {
45
+ "system_start": "<|system|>\n",
46
+ "system_end": "<|end|>",
47
+ "user_start": "<|user|>\n",
48
+ "user_end": "<|end|>",
49
+ "assistant_start": "<|assistant|>\n",
50
+ "assistant_end": "<|end|>",
51
+ "test_start": "<|assistant|>\n",
52
+ "test_end": "<|end|>",
53
+ "split": "",
54
+ }
55
+
56
+ def eval_process(
57
+ self,
58
+ inputs,
59
+ tokenizer,
60
+ data,
61
+ device,
62
+ ):
63
+ batched_image=[]
64
+ batched_qa_prompt=[]
65
+ batched_phantom_position = []
66
+ for _input in inputs:
67
+
68
+ # making image prompt
69
+ if 'image' in _input.keys() and _input['image'] != None:
70
+ process_image = dynamic_preprocess(_input['image'].to(device))
71
+ dynamic_process_image = torch.stack([dynamic_transform(image) for image in process_image]).to(device)
72
+ img_token_number = dynamic_process_image.shape[0] * 256
73
+ batched_image.append(dynamic_process_image)
74
+
75
+ # make question and answer
76
+ question = _input['question']
77
+
78
+ # make instruction (qa pair) and label
79
+ qa_prompt = make_instruction(question, data, self.prompt_rule)
80
+
81
+ # adding image special tokens to question
82
+ if 'image' in _input.keys():
83
+ qa_prompt = qa_prompt.replace('<image>', '<img><IMG_CONTEXT></img>')
84
+
85
+ # add bundle image tokens if it has <image> token
86
+ qa_prompt = add_bundle_tokens(qa_prompt, '<IMG_CONTEXT>', img_token_number)
87
+
88
+ # phantom_position
89
+ label = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].to(device)
90
+ phantom_position = torch.zeros_like(label)
91
+ phantom_position[0] = 1
92
+
93
+ # batched processing
94
+ batched_qa_prompt.append(qa_prompt)
95
+ batched_phantom_position.append(phantom_position.flip(dims=[0]))
96
+
97
+ '''For Final Outputs'''
98
+ qa_prompts = tokenizer(batched_qa_prompt, padding='longest', return_tensors="pt", add_special_tokens=False)
99
+
100
+ # [1] input_ids
101
+ input_ids = qa_prompts.input_ids.to(device)
102
+
103
+ # [2] attention_mask
104
+ attention_mask = qa_prompts.attention_mask.to(device)
105
+
106
+ # [3] Phantom Position
107
+ batched_phantom_position = torch.nn.utils.rnn.pad_sequence(batched_phantom_position, batch_first=True, padding_value=0).flip(dims=[1]) # padding left
108
+
109
+ if len(batched_image):
110
+ return {"input_ids": input_ids,
111
+ "attention_mask": attention_mask,
112
+ "pixel_values": torch.cat(batched_image, dim=0).to(device),
113
+ "phantom_position": batched_phantom_position.bool()
114
+ }
115
+ else:
116
+ return {"input_ids": input_ids,
117
+ "attention_mask": attention_mask,
118
+ "phantom_position": batched_phantom_position.bool()
119
+ }
120
+
121
+ def extract_feature(self, pixel_values):
122
+ vit_embeds = self.vision_model(
123
+ pixel_values=pixel_values,
124
+ output_hidden_states=False,
125
+ return_dict=True).last_hidden_state
126
+ vit_embeds = vit_embeds[:, 1:, :]
127
+
128
+ h = w = int(vit_embeds.shape[1] ** 0.5)
129
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
130
+ vit_embeds = pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
131
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
132
+ vit_embeds = self.vision_proj(vit_embeds)
133
+ return vit_embeds
134
+
135
+
136
+ @torch.no_grad()
137
+ def generate(
138
+ self,
139
+ pixel_values: Optional[torch.FloatTensor] = None,
140
+ input_ids: Optional[torch.FloatTensor] = None,
141
+ attention_mask: Optional[torch.LongTensor] = None,
142
+ phantom_position: torch.BoolTensor = None,
143
+ generation_config: Optional[GenerationConfig] = None,
144
+ output_hidden_states: Optional[bool] = None,
145
+ return_dict: Optional[bool] = None,
146
+ **generate_kwargs,
147
+ ) -> torch.LongTensor:
148
+
149
+ if pixel_values is not None:
150
+ vit_embeds = self.extract_feature(pixel_values.to(torch.bfloat16))
151
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
152
+ B, N, C = input_embeds.shape
153
+ input_embeds = input_embeds.reshape(B * N, C)
154
+
155
+ input_ids = input_ids.reshape(B * N)
156
+ selected = (input_ids == self.config.image_token_index)
157
+ assert selected.sum() != 0
158
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
159
+
160
+ input_embeds = input_embeds.reshape(B, N, C)
161
+ else:
162
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
163
+
164
+ outputs = self.language_model.generate(
165
+ inputs_embeds=input_embeds,
166
+ attention_mask=attention_mask,
167
+ phantom_position=phantom_position,
168
+ generation_config=generation_config,
169
+ output_hidden_states=output_hidden_states,
170
+ return_dict=return_dict,
171
+ use_cache=True,
172
+ pad_token_id=self.config.eos_token_id,
173
+ eos_token_id=self.config.eos_token_id,
174
+ **generate_kwargs,
175
+ )
176
+
177
+ return outputs
model/arch_3_8b/modeling_phi3.py ADDED
@@ -0,0 +1,1683 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ PyTorch Phi-3 model."""
16
+
17
+ import inspect
18
+ import math
19
+ import warnings
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import Cache, DynamicCache
29
+ from transformers.modeling_attn_mask_utils import \
30
+ _prepare_4d_causal_attention_mask
31
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ SequenceClassifierOutputWithPast,
34
+ TokenClassifierOutput)
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import (add_code_sample_docstrings,
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ is_flash_attn_greater_or_equal_2_10, logging,
41
+ replace_return_docstrings)
42
+
43
+ from .configuration_phi3 import Phi3Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
48
+ # if is_flash_attn_2_available():
49
+ _flash_supports_window_size = False
50
+ try:
51
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
52
+ from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
53
+ unpad_input)
54
+
55
+ _flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
56
+ has_flash_attn = True
57
+ except ImportError as error:
58
+ logger.warning(
59
+ f'`flash-attention` package not found, consider installing for better performance: {error}.'
60
+ )
61
+ if not _flash_supports_window_size:
62
+ logger.warning(
63
+ "Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
64
+ )
65
+ has_flash_attn = False
66
+
67
+ _CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
68
+ _CONFIG_FOR_DOC = 'Phi3Config'
69
+
70
+ PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
71
+ 'microsoft/Phi-3-mini-4k-instruct',
72
+ 'microsoft/Phi-3-mini-128k-instruct',
73
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
74
+ ]
75
+
76
+ # Phantom
77
+ from utils.utils import *
78
+
79
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
80
+ class Phi3RMSNorm(nn.Module):
81
+ def __init__(self, hidden_size, eps=1e-6):
82
+ """
83
+ Phi3RMSNorm is equivalent to T5LayerNorm
84
+ """
85
+ super().__init__()
86
+ self.weight = nn.Parameter(torch.ones(hidden_size))
87
+ self.variance_epsilon = eps
88
+
89
+ def forward(self, hidden_states):
90
+ input_dtype = hidden_states.dtype
91
+ hidden_states = hidden_states.to(torch.float32)
92
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
93
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
94
+ return self.weight * hidden_states.to(input_dtype)
95
+
96
+
97
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
98
+ def _get_unpad_data(attention_mask):
99
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
100
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
101
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
102
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
103
+ return (
104
+ indices,
105
+ cu_seqlens,
106
+ max_seqlen_in_batch,
107
+ )
108
+
109
+
110
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
111
+ class Phi3RotaryEmbedding(nn.Module):
112
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
113
+ super().__init__()
114
+
115
+ self.dim = dim
116
+ self.max_position_embeddings = max_position_embeddings
117
+ self.base = base
118
+ self.register_buffer('inv_freq', None, persistent=False)
119
+
120
+ @torch.no_grad()
121
+ def forward(self, x, position_ids, seq_len=None):
122
+ # x: [bs, num_attention_heads, seq_len, head_size]
123
+ if self.inv_freq is None:
124
+ self.inv_freq = 1.0 / (
125
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
126
+ )
127
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
128
+ position_ids_expanded = position_ids[:, None, :].float()
129
+ # Force float32 since bfloat16 loses precision on long contexts
130
+ # See https://github.com/huggingface/transformers/pull/29285
131
+ device_type = x.device.type
132
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
133
+ with torch.autocast(device_type=device_type, enabled=False):
134
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
135
+ emb = torch.cat((freqs, freqs), dim=-1)
136
+ cos = emb.cos()
137
+ sin = emb.sin()
138
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
139
+
140
+
141
+ class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
142
+ def __init__(self, dim, config, device=None):
143
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
144
+
145
+ self.short_factor = config.rope_scaling['short_factor']
146
+ self.long_factor = config.rope_scaling['long_factor']
147
+ self.original_max_position_embeddings = config.original_max_position_embeddings
148
+
149
+ @torch.no_grad()
150
+ def forward(self, x, position_ids, seq_len=None):
151
+ seq_len = torch.max(position_ids) + 1
152
+ if seq_len > self.original_max_position_embeddings:
153
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
154
+ else:
155
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
156
+
157
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
158
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
159
+
160
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
161
+ position_ids_expanded = position_ids[:, None, :].float()
162
+
163
+ # Force float32 since bfloat16 loses precision on long contexts
164
+ # See https://github.com/huggingface/transformers/pull/29285
165
+ device_type = x.device.type
166
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
167
+ with torch.autocast(device_type=device_type, enabled=False):
168
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
169
+ emb = torch.cat((freqs, freqs), dim=-1)
170
+
171
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
172
+ if scale <= 1.0:
173
+ scaling_factor = 1.0
174
+ else:
175
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
176
+
177
+ cos = emb.cos() * scaling_factor
178
+ sin = emb.sin() * scaling_factor
179
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
180
+
181
+
182
+ class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
183
+ def __init__(self, dim, config, device=None):
184
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
185
+
186
+ self.short_factor = config.rope_scaling['short_factor']
187
+ self.long_factor = config.rope_scaling['long_factor']
188
+ self.original_max_position_embeddings = config.original_max_position_embeddings
189
+
190
+ @torch.no_grad()
191
+ def forward(self, x, position_ids, seq_len=None):
192
+ seq_len = torch.max(position_ids) + 1
193
+ if seq_len > self.original_max_position_embeddings:
194
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
195
+ else:
196
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
197
+
198
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
199
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
200
+
201
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
202
+ position_ids_expanded = position_ids[:, None, :].float()
203
+
204
+ # Force float32 since bfloat16 loses precision on long contexts
205
+ # See https://github.com/huggingface/transformers/pull/29285
206
+ device_type = x.device.type
207
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
208
+ with torch.autocast(device_type=device_type, enabled=False):
209
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
210
+ emb = torch.cat((freqs, freqs), dim=-1)
211
+
212
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
213
+ if scale <= 1.0:
214
+ scaling_factor = 1.0
215
+ else:
216
+ scaling_factor = 0.1 * math.log(scale) + 1.0
217
+
218
+ cos = emb.cos() * scaling_factor
219
+ sin = emb.sin() * scaling_factor
220
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
221
+
222
+
223
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
224
+ def rotate_half(x):
225
+ """Rotates half the hidden dims of the input."""
226
+ x1 = x[..., : x.shape[-1] // 2]
227
+ x2 = x[..., x.shape[-1] // 2 :]
228
+ return torch.cat((-x2, x1), dim=-1)
229
+
230
+
231
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
232
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
233
+ """Applies Rotary Position Embedding to the query and key tensors.
234
+
235
+ Args:
236
+ q (`torch.Tensor`): The query tensor.
237
+ k (`torch.Tensor`): The key tensor.
238
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
239
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
240
+ position_ids (`torch.Tensor`, *optional*):
241
+ Deprecated and unused.
242
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
243
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
244
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
245
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
246
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
247
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
248
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
249
+ Returns:
250
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
251
+ """
252
+ cos = cos.unsqueeze(unsqueeze_dim)
253
+ sin = sin.unsqueeze(unsqueeze_dim)
254
+ q_embed = (q * cos) + (rotate_half(q) * sin)
255
+ k_embed = (k * cos) + (rotate_half(k) * sin)
256
+ return q_embed, k_embed
257
+
258
+
259
+ class Phi3MLP(nn.Module):
260
+ def __init__(self, config):
261
+ super().__init__()
262
+
263
+ self.config = config
264
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
265
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
266
+
267
+ self.activation_fn = ACT2FN[config.hidden_act]
268
+
269
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
270
+ up_states = self.gate_up_proj(hidden_states)
271
+
272
+ gate, up_states = up_states.chunk(2, dim=-1)
273
+ up_states = up_states * self.activation_fn(gate)
274
+
275
+ return self.down_proj(up_states)
276
+
277
+
278
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
279
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
280
+ """
281
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
282
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
283
+ """
284
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
285
+ if n_rep == 1:
286
+ return hidden_states
287
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
288
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
289
+
290
+
291
+ class Phi3Attention(nn.Module):
292
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
293
+
294
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
295
+ super().__init__()
296
+ self.config = config
297
+ self.layer_idx = layer_idx
298
+ if layer_idx is None:
299
+ logger.warning_once(
300
+ f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
301
+ 'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
302
+ 'when creating this class.'
303
+ )
304
+
305
+ self.attention_dropout = config.attention_dropout
306
+ self.hidden_size = config.hidden_size
307
+ self.num_heads = config.num_attention_heads
308
+ self.head_dim = self.hidden_size // self.num_heads
309
+ self.num_key_value_heads = config.num_key_value_heads
310
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
311
+ self.max_position_embeddings = config.max_position_embeddings
312
+ self.original_max_position_embeddings = config.original_max_position_embeddings
313
+ self.rope_theta = config.rope_theta
314
+ self.rope_scaling = config.rope_scaling
315
+ self.is_causal = True
316
+
317
+ if (self.head_dim * self.num_heads) != self.hidden_size:
318
+ raise ValueError(
319
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
320
+ f' and `num_heads`: {self.num_heads}).'
321
+ )
322
+
323
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
324
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
325
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
326
+ self._init_rope()
327
+
328
+ """
329
+ Phantom
330
+ """
331
+ # Phantom Init
332
+ self.turn_on_phantom = True
333
+ self.xattn_query_phantom = XAttention(self.head_dim)
334
+ self.xattn_key_phantom = XAttention(self.head_dim)
335
+ self.xattn_value_phantom = XAttention(self.head_dim)
336
+ self.gating_phantom_1 = nn.Linear(self.head_dim, 1)
337
+ self.gating_phantom_2 = nn.Linear(self.head_dim, 1)
338
+
339
+ def _init_rope(self):
340
+ if self.rope_scaling is None:
341
+ self.rotary_emb = Phi3RotaryEmbedding(
342
+ self.head_dim,
343
+ max_position_embeddings=self.max_position_embeddings,
344
+ base=self.rope_theta,
345
+ )
346
+ else:
347
+ scaling_type = self.config.rope_scaling['type']
348
+ if scaling_type == 'su':
349
+ self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
350
+ elif scaling_type == 'yarn':
351
+ self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
352
+ else:
353
+ raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
354
+
355
+ def forward(
356
+ self,
357
+ hidden_states: torch.Tensor,
358
+ attention_mask: Optional[torch.Tensor] = None,
359
+ position_ids: Optional[torch.LongTensor] = None,
360
+ past_key_value: Optional[Cache] = None,
361
+ output_attentions: bool = False,
362
+ use_cache: bool = False,
363
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
364
+ logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
365
+
366
+ bsz, q_len, _ = hidden_states.size()
367
+
368
+ qkv = self.qkv_proj(hidden_states)
369
+ query_pos = self.num_heads * self.head_dim
370
+ query_states = qkv[..., :query_pos]
371
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
372
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
373
+
374
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
375
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
376
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
377
+
378
+ kv_seq_len = key_states.shape[-2]
379
+ if past_key_value is not None:
380
+ if self.layer_idx is None:
381
+ raise ValueError(
382
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
383
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
384
+ 'with a layer index.'
385
+ )
386
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
387
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
388
+
389
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
390
+
391
+ if past_key_value is not None:
392
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
393
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
394
+
395
+ # repeat k/v heads if n_kv_heads < n_heads
396
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
397
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
398
+
399
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
400
+
401
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
402
+ raise ValueError(
403
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
404
+ f' {attn_weights.size()}'
405
+ )
406
+
407
+ if attention_mask is not None:
408
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
409
+ raise ValueError(
410
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
411
+ )
412
+ attn_weights = attn_weights + attention_mask
413
+
414
+ # upcast attention to fp32
415
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
416
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
417
+
418
+ attn_output = torch.matmul(attn_weights, value_states)
419
+
420
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
421
+ raise ValueError(
422
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
423
+ f' {attn_output.size()}'
424
+ )
425
+
426
+ attn_output = attn_output.transpose(1, 2).contiguous()
427
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
428
+
429
+ attn_output = self.o_proj(attn_output)
430
+
431
+ if not output_attentions:
432
+ attn_weights = None
433
+
434
+ return attn_output, attn_weights, past_key_value
435
+
436
+
437
+ class Phi3FlashAttention2(Phi3Attention):
438
+ """
439
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
440
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
441
+ flash attention and deal with padding tokens in case the input contains any of them.
442
+ """
443
+
444
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
445
+ def __init__(self, *args, **kwargs):
446
+ super().__init__(*args, **kwargs)
447
+
448
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
449
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
450
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
451
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
452
+
453
+ def forward(
454
+ self,
455
+ hidden_states: torch.Tensor,
456
+ attention_mask: Optional[torch.LongTensor] = None,
457
+ position_ids: Optional[torch.LongTensor] = None,
458
+ past_key_value: Optional[Cache] = None,
459
+ phantom_position: torch.BoolTensor = None,
460
+ output_attentions: bool = False,
461
+ use_cache: bool = False,
462
+ **kwargs,
463
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
464
+ # Phi3FlashAttention2 attention does not support output_attentions
465
+
466
+ if not _flash_supports_window_size:
467
+ logger.warning_once(
468
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
469
+ )
470
+ raise ValueError('The current flash attention version does not support sliding window attention.')
471
+
472
+ output_attentions = False
473
+
474
+ if 'padding_mask' in kwargs:
475
+ warnings.warn(
476
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
477
+ )
478
+
479
+ # overwrite attention_mask with padding_mask
480
+ attention_mask = kwargs.pop('padding_mask')
481
+
482
+ bsz, q_len, _ = hidden_states.size()
483
+
484
+ qkv = self.qkv_proj(hidden_states)
485
+ query_pos = self.num_heads * self.head_dim
486
+ query_states = qkv[..., :query_pos]
487
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
488
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
489
+
490
+ # Flash attention requires the input to have the shape
491
+ # batch_size x seq_length x head_dim x hidden_dim
492
+ # therefore we just need to keep the original shape
493
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
494
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
495
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
496
+
497
+ kv_seq_len = key_states.shape[-2]
498
+ if past_key_value is not None:
499
+ if self.layer_idx is None:
500
+ raise ValueError(
501
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
502
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
503
+ 'with a layer index.'
504
+ )
505
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
506
+
507
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
508
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
509
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
510
+
511
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
512
+
513
+ use_sliding_windows = (
514
+ _flash_supports_window_size
515
+ and getattr(self.config, 'sliding_window', None) is not None
516
+ and kv_seq_len > self.config.sliding_window
517
+ )
518
+
519
+ if past_key_value is not None:
520
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
521
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
522
+ if (
523
+ getattr(self.config, 'sliding_window', None) is not None
524
+ and kv_seq_len > self.config.sliding_window
525
+ and cache_has_contents
526
+ ):
527
+ slicing_tokens = 1 - self.config.sliding_window
528
+
529
+ past_key = past_key_value[self.layer_idx][0]
530
+ past_value = past_key_value[self.layer_idx][1]
531
+
532
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
533
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
534
+
535
+ if past_key.shape[-2] != self.config.sliding_window - 1:
536
+ raise ValueError(
537
+ f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
538
+ f' {past_key.shape}'
539
+ )
540
+
541
+ if attention_mask is not None:
542
+ attention_mask = attention_mask[:, slicing_tokens:]
543
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
544
+
545
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
546
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
547
+
548
+ # repeat k/v heads if n_kv_heads < n_heads
549
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
550
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
551
+
552
+ attn_dropout = self.attention_dropout if self.training else 0.0
553
+
554
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
555
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
556
+ # cast them back in the correct dtype just to be sure everything works as expected.
557
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
558
+ # in fp32.
559
+
560
+ if query_states.dtype == torch.float32:
561
+ if torch.is_autocast_enabled():
562
+ target_dtype = torch.get_autocast_gpu_dtype()
563
+ # Handle the case where the model is quantized
564
+ elif hasattr(self.config, '_pre_quantization_dtype'):
565
+ target_dtype = self.config._pre_quantization_dtype
566
+ else:
567
+ target_dtype = self.qkv_proj.weight.dtype
568
+
569
+ logger.warning_once(
570
+ f'The input hidden states seems to be silently casted in float32, this might be related to'
571
+ f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
572
+ f' {target_dtype}.'
573
+ )
574
+
575
+ query_states = query_states.to(target_dtype)
576
+ key_states = key_states.to(target_dtype)
577
+ value_states = value_states.to(target_dtype)
578
+
579
+ # Reashape to the expected shape for Flash Attention
580
+ query_states = query_states.transpose(1, 2)
581
+ key_states = key_states.transpose(1, 2)
582
+ value_states = value_states.transpose(1, 2)
583
+
584
+ attn_output = self._flash_attention_forward(
585
+ query_states,
586
+ key_states,
587
+ value_states,
588
+ attention_mask,
589
+ q_len,
590
+ phantom_position,
591
+ dropout=attn_dropout,
592
+ use_sliding_windows=use_sliding_windows,
593
+ )
594
+
595
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
596
+ attn_output = self.o_proj(attn_output)
597
+
598
+ if not output_attentions:
599
+ attn_weights = None
600
+
601
+ return attn_output, attn_weights, past_key_value
602
+
603
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
604
+ def _flash_attention_forward(
605
+ self,
606
+ query_states,
607
+ key_states,
608
+ value_states,
609
+ attention_mask,
610
+ query_length,
611
+ phantom_position,
612
+ dropout=0.0,
613
+ softmax_scale=None,
614
+ use_sliding_windows=False,
615
+ ):
616
+ """
617
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
618
+ first unpad the input, then computes the attention scores and pad the final attention scores.
619
+
620
+ Args:
621
+ query_states (`torch.Tensor`):
622
+ Input query states to be passed to Flash Attention API
623
+ key_states (`torch.Tensor`):
624
+ Input key states to be passed to Flash Attention API
625
+ value_states (`torch.Tensor`):
626
+ Input value states to be passed to Flash Attention API
627
+ attention_mask (`torch.Tensor`):
628
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
629
+ position of padding tokens and 1 for the position of non-padding tokens.
630
+ dropout (`float`):
631
+ Attention dropout
632
+ softmax_scale (`float`, *optional*):
633
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
634
+ use_sliding_windows (`bool`, *optional*):
635
+ Whether to activate sliding window attention.
636
+ """
637
+
638
+ """
639
+ Phantom
640
+ """
641
+ if self.turn_on_phantom:
642
+
643
+ # [Important] softmax_scale
644
+ softmax_scale = 1 / math.sqrt(query_states.shape[-1])
645
+
646
+ query_states_phantom = []
647
+ key_states_phantom = []
648
+ value_states_phantom = []
649
+ for index, pos in enumerate(phantom_position):
650
+ if query_states.shape[1] > 1:
651
+ query_states_phantom.append(query_states[index][pos])
652
+ key_states_phantom.append(key_states[index][pos])
653
+ value_states_phantom.append(value_states[index][pos])
654
+
655
+ # saving phantom qkv for inference
656
+ self.query_states_phantom = query_states_phantom
657
+ self.key_states_phantom = key_states_phantom
658
+ self.value_states_phantom = value_states_phantom
659
+
660
+ # phantom qkv: list to tensor
661
+ query_states_phantom = torch.stack(self.query_states_phantom)
662
+ key_states_phantom = torch.stack(self.key_states_phantom)
663
+ value_states_phantom = torch.stack(self.value_states_phantom)
664
+
665
+ # phantom qkv: 1 -> N (sequence)
666
+ query_states_phantom = self.xattn_query_phantom(q=query_states, k=query_states_phantom, v=query_states_phantom)
667
+ key_states_phantom = self.xattn_key_phantom(q=key_states, k=key_states_phantom, v=key_states_phantom)
668
+ value_states_phantom = self.xattn_value_phantom(q=value_states, k=value_states_phantom, v=value_states_phantom, is_residual=True)
669
+
670
+ # concat original qkv and phantom qkv for hidden-dimension / heads
671
+ query_states = torch.cat([query_states, query_states_phantom], dim=3)
672
+ key_states = torch.cat([key_states, key_states_phantom], dim=3)
673
+ value_states = torch.cat([value_states, value_states_phantom], dim=3)
674
+
675
+ if not self._flash_attn_uses_top_left_mask:
676
+ causal = self.is_causal
677
+ else:
678
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
679
+ causal = self.is_causal and query_length != 1
680
+
681
+ # Contains at least one padding token in the sequence
682
+ if attention_mask is not None:
683
+ batch_size = query_states.shape[0]
684
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
685
+ query_states, key_states, value_states, attention_mask, query_length
686
+ )
687
+
688
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
689
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
690
+
691
+ if not use_sliding_windows:
692
+ attn_output_unpad = flash_attn_varlen_func(
693
+ query_states,
694
+ key_states,
695
+ value_states,
696
+ cu_seqlens_q=cu_seqlens_q,
697
+ cu_seqlens_k=cu_seqlens_k,
698
+ max_seqlen_q=max_seqlen_in_batch_q,
699
+ max_seqlen_k=max_seqlen_in_batch_k,
700
+ dropout_p=dropout,
701
+ softmax_scale=softmax_scale,
702
+ causal=causal,
703
+ )
704
+ else:
705
+ attn_output_unpad = flash_attn_varlen_func(
706
+ query_states,
707
+ key_states,
708
+ value_states,
709
+ cu_seqlens_q=cu_seqlens_q,
710
+ cu_seqlens_k=cu_seqlens_k,
711
+ max_seqlen_q=max_seqlen_in_batch_q,
712
+ max_seqlen_k=max_seqlen_in_batch_k,
713
+ dropout_p=dropout,
714
+ softmax_scale=softmax_scale,
715
+ causal=causal,
716
+ window_size=(self.config.sliding_window, self.config.sliding_window),
717
+ )
718
+
719
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
720
+ else:
721
+ if not use_sliding_windows:
722
+ attn_output = flash_attn_func(
723
+ query_states,
724
+ key_states,
725
+ value_states,
726
+ dropout,
727
+ softmax_scale=softmax_scale,
728
+ causal=causal,
729
+ )
730
+ else:
731
+ attn_output = flash_attn_func(
732
+ query_states,
733
+ key_states,
734
+ value_states,
735
+ dropout,
736
+ softmax_scale=softmax_scale,
737
+ causal=causal,
738
+ window_size=(self.config.sliding_window, self.config.sliding_window),
739
+ )
740
+
741
+ """
742
+ Phantom
743
+ """
744
+ if self.turn_on_phantom:
745
+ half_dim = attn_output.shape[-1] // 2
746
+ half1_o = attn_output[...,:half_dim]
747
+ half2_o = attn_output[...,half_dim:]
748
+ weight1 = self.gating_phantom_1(half1_o)
749
+ weight2 = self.gating_phantom_2(half2_o)
750
+ weight_norm = weight1.exp() / (weight1.exp() + weight2.exp())
751
+ attn_output = weight_norm * half1_o + (1-weight_norm) * half2_o
752
+ return attn_output
753
+
754
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
755
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
756
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
757
+
758
+ # On the first iteration we need to properly re-create the padding mask
759
+ # by slicing it on the proper place
760
+ if kv_seq_len != attention_mask.shape[-1]:
761
+ attention_mask_num_tokens = attention_mask.shape[-1]
762
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
763
+
764
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
765
+
766
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
767
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
768
+
769
+ if query_length == kv_seq_len:
770
+ query_layer = index_first_axis(
771
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
772
+ )
773
+ cu_seqlens_q = cu_seqlens_k
774
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
775
+ indices_q = indices_k
776
+ elif query_length == 1:
777
+ max_seqlen_in_batch_q = 1
778
+ cu_seqlens_q = torch.arange(
779
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
780
+ ) # There is a memcpy here, that is very bad.
781
+ indices_q = cu_seqlens_q[:-1]
782
+ query_layer = query_layer.squeeze(1)
783
+ else:
784
+ # The -q_len: slice assumes left padding.
785
+ attention_mask = attention_mask[:, -query_length:]
786
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
787
+
788
+ return (
789
+ query_layer,
790
+ key_layer,
791
+ value_layer,
792
+ indices_q,
793
+ (cu_seqlens_q, cu_seqlens_k),
794
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
795
+ )
796
+
797
+
798
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
799
+ # TODO @Arthur no longer copied from LLama after static cache
800
+ class Phi3SdpaAttention(Phi3Attention):
801
+ """
802
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
803
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
804
+ SDPA API.
805
+ """
806
+
807
+ # Adapted from Phi3Attention.forward
808
+ def forward(
809
+ self,
810
+ hidden_states: torch.Tensor,
811
+ attention_mask: Optional[torch.Tensor] = None,
812
+ position_ids: Optional[torch.LongTensor] = None,
813
+ past_key_value: Optional[Cache] = None,
814
+ output_attentions: bool = False,
815
+ use_cache: bool = False,
816
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
817
+ if output_attentions:
818
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
819
+ logger.warning_once(
820
+ 'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
821
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
822
+ )
823
+ return super().forward(
824
+ hidden_states=hidden_states,
825
+ attention_mask=attention_mask,
826
+ position_ids=position_ids,
827
+ past_key_value=past_key_value,
828
+ output_attentions=output_attentions,
829
+ use_cache=use_cache,
830
+ )
831
+
832
+ bsz, q_len, _ = hidden_states.size()
833
+
834
+ qkv = self.qkv_proj(hidden_states)
835
+ query_pos = self.num_heads * self.head_dim
836
+ query_states = qkv[..., :query_pos]
837
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
838
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
839
+
840
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
841
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
842
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
843
+
844
+ kv_seq_len = key_states.shape[-2]
845
+ if past_key_value is not None:
846
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
847
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
848
+
849
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
850
+
851
+ if past_key_value is not None:
852
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
853
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
854
+
855
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
856
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
857
+
858
+ if attention_mask is not None:
859
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
860
+ raise ValueError(
861
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
862
+ )
863
+
864
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
865
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
866
+ if query_states.device.type == 'cuda' and attention_mask is not None:
867
+ query_states = query_states.contiguous()
868
+ key_states = key_states.contiguous()
869
+ value_states = value_states.contiguous()
870
+
871
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
872
+ query_states,
873
+ key_states,
874
+ value_states,
875
+ attn_mask=attention_mask,
876
+ dropout_p=self.attention_dropout if self.training else 0.0,
877
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
878
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
879
+ )
880
+
881
+ attn_output = attn_output.transpose(1, 2).contiguous()
882
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
883
+
884
+ attn_output = self.o_proj(attn_output)
885
+
886
+ return attn_output, None, past_key_value
887
+
888
+
889
+ PHI3_ATTENTION_CLASSES = {
890
+ 'eager': Phi3Attention,
891
+ 'flash_attention_2': Phi3FlashAttention2,
892
+ 'sdpa': Phi3SdpaAttention,
893
+ }
894
+
895
+
896
+ class Phi3DecoderLayer(nn.Module):
897
+ def __init__(self, config: Phi3Config, layer_idx: int):
898
+ super().__init__()
899
+
900
+ self.config = config
901
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
902
+
903
+ self.mlp = Phi3MLP(config)
904
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
905
+
906
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
907
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
908
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
909
+
910
+ def forward(
911
+ self,
912
+ hidden_states: torch.Tensor,
913
+ attention_mask: Optional[torch.Tensor] = None,
914
+ position_ids: Optional[torch.LongTensor] = None,
915
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
916
+ phantom_position: torch.BoolTensor = None,
917
+ output_attentions: Optional[bool] = False,
918
+ use_cache: Optional[bool] = False,
919
+ **kwargs,
920
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
921
+ if 'padding_mask' in kwargs:
922
+ warnings.warn(
923
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
924
+ )
925
+ """
926
+ Args:
927
+ hidden_states (`torch.FloatTensor`):
928
+ input to the layer of shape `(batch, seq_len, embed_dim)`
929
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
930
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
931
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
932
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
933
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
934
+ output_attentions (`bool`, *optional*):
935
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
936
+ returned tensors for more detail.
937
+ use_cache (`bool`, *optional*):
938
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
939
+ (see `past_key_values`).
940
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
941
+ """
942
+
943
+ residual = hidden_states
944
+
945
+ hidden_states = self.input_layernorm(hidden_states)
946
+
947
+ # Self Attention
948
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
949
+ hidden_states=hidden_states,
950
+ attention_mask=attention_mask,
951
+ position_ids=position_ids,
952
+ past_key_value=past_key_value,
953
+ phantom_position=phantom_position,
954
+ output_attentions=output_attentions,
955
+ use_cache=use_cache,
956
+ )
957
+
958
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
959
+
960
+ residual = hidden_states
961
+ hidden_states = self.post_attention_layernorm(hidden_states)
962
+ hidden_states = self.mlp(hidden_states)
963
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
964
+
965
+ outputs = (hidden_states,)
966
+
967
+ if output_attentions:
968
+ outputs += (self_attn_weights,)
969
+
970
+ if use_cache:
971
+ outputs += (present_key_value,)
972
+
973
+ return outputs
974
+
975
+
976
+ PHI3_START_DOCSTRING = r"""
977
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
978
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
979
+ etc.)
980
+
981
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
982
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
983
+ and behavior.
984
+
985
+ Parameters:
986
+ config ([`Phi3Config`]):
987
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
988
+ load the weights associated with the model, only the configuration. Check out the
989
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
990
+ """
991
+
992
+
993
+ @add_start_docstrings(
994
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
995
+ PHI3_START_DOCSTRING,
996
+ )
997
+ class Phi3PreTrainedModel(PreTrainedModel):
998
+ config_class = Phi3Config
999
+ base_model_prefix = 'model'
1000
+ supports_gradient_checkpointing = True
1001
+ _no_split_modules = ['Phi3DecoderLayer']
1002
+ _skip_keys_device_placement = 'past_key_values'
1003
+ _supports_flash_attn_2 = True
1004
+ _supports_sdpa = False
1005
+ _supports_cache_class = True
1006
+
1007
+ _version = '0.0.5'
1008
+
1009
+ def __init__(self, config: Phi3Config):
1010
+ if not has_flash_attn:
1011
+ config._attn_implementation = 'eager'
1012
+ print('Warning: Flash attention is not available, using eager attention instead.')
1013
+ super().__init__(config)
1014
+
1015
+ def _init_weights(self, module):
1016
+ std = self.config.initializer_range
1017
+ if isinstance(module, nn.Linear):
1018
+ module.weight.data.normal_(mean=0.0, std=std)
1019
+ if module.bias is not None:
1020
+ module.bias.data.zero_()
1021
+ elif isinstance(module, nn.Embedding):
1022
+ module.weight.data.normal_(mean=0.0, std=std)
1023
+ if module.padding_idx is not None:
1024
+ module.weight.data[module.padding_idx].zero_()
1025
+
1026
+
1027
+ PHI3_INPUTS_DOCSTRING = r"""
1028
+ Args:
1029
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1030
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1031
+ it.
1032
+
1033
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1034
+ [`PreTrainedTokenizer.__call__`] for details.
1035
+
1036
+ [What are input IDs?](../glossary#input-ids)
1037
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1038
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1039
+
1040
+ - 1 for tokens that are **not masked**,
1041
+ - 0 for tokens that are **masked**.
1042
+
1043
+ [What are attention masks?](../glossary#attention-mask)
1044
+
1045
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1046
+ [`PreTrainedTokenizer.__call__`] for details.
1047
+
1048
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1049
+ `past_key_values`).
1050
+
1051
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1052
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1053
+ information on the default strategy.
1054
+
1055
+ - 1 indicates the head is **not masked**,
1056
+ - 0 indicates the head is **masked**.
1057
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1058
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1059
+ config.n_positions - 1]`.
1060
+
1061
+ [What are position IDs?](../glossary#position-ids)
1062
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1063
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1064
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1065
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1066
+
1067
+ Two formats are allowed:
1068
+ - a [`~cache_utils.Cache`] instance;
1069
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1070
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1071
+ cache format.
1072
+
1073
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1074
+ legacy cache format will be returned.
1075
+
1076
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1077
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1078
+ of shape `(batch_size, sequence_length)`.
1079
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1080
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1081
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1082
+ model's internal embedding lookup matrix.
1083
+ use_cache (`bool`, *optional*):
1084
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1085
+ `past_key_values`).
1086
+ output_attentions (`bool`, *optional*):
1087
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1088
+ tensors for more detail.
1089
+ output_hidden_states (`bool`, *optional*):
1090
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1091
+ more detail.
1092
+ return_dict (`bool`, *optional*):
1093
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1094
+ """
1095
+
1096
+
1097
+ @add_start_docstrings(
1098
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
1099
+ PHI3_START_DOCSTRING,
1100
+ )
1101
+ class Phi3Model(Phi3PreTrainedModel):
1102
+ """
1103
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1104
+
1105
+ Args:
1106
+ config: Phi3Config
1107
+ """
1108
+
1109
+ def __init__(self, config: Phi3Config):
1110
+ super().__init__(config)
1111
+ self.padding_idx = config.pad_token_id
1112
+ self.vocab_size = config.vocab_size
1113
+
1114
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1115
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1116
+ self.layers = nn.ModuleList(
1117
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1118
+ )
1119
+ self._attn_implementation = config._attn_implementation
1120
+
1121
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1122
+
1123
+ self.gradient_checkpointing = False
1124
+ # Initialize weights and apply final processing
1125
+ self.post_init()
1126
+
1127
+ def get_input_embeddings(self):
1128
+ return self.embed_tokens
1129
+
1130
+ def set_input_embeddings(self, value):
1131
+ self.embed_tokens = value
1132
+
1133
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1134
+ def forward(
1135
+ self,
1136
+ input_ids: torch.LongTensor = None,
1137
+ attention_mask: Optional[torch.Tensor] = None,
1138
+ position_ids: Optional[torch.LongTensor] = None,
1139
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1140
+ phantom_position: torch.BoolTensor = None,
1141
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1142
+ use_cache: Optional[bool] = None,
1143
+ output_attentions: Optional[bool] = None,
1144
+ output_hidden_states: Optional[bool] = None,
1145
+ return_dict: Optional[bool] = None,
1146
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1147
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1148
+ output_hidden_states = (
1149
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1150
+ )
1151
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1152
+
1153
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1154
+
1155
+ # retrieve input_ids and inputs_embeds
1156
+ if input_ids is not None and inputs_embeds is not None:
1157
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
1158
+ elif input_ids is not None:
1159
+ batch_size, seq_length = input_ids.shape[:2]
1160
+ elif inputs_embeds is not None:
1161
+ batch_size, seq_length = inputs_embeds.shape[:2]
1162
+ else:
1163
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
1164
+
1165
+ past_key_values_length = 0
1166
+
1167
+ if self.gradient_checkpointing and self.training:
1168
+ if use_cache:
1169
+ logger.warning_once(
1170
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
1171
+ )
1172
+ use_cache = False
1173
+
1174
+ if use_cache:
1175
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1176
+ if use_legacy_cache:
1177
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1178
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1179
+
1180
+ if position_ids is None:
1181
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1182
+ position_ids = torch.arange(
1183
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1184
+ )
1185
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1186
+ else:
1187
+ position_ids = position_ids.view(-1, seq_length).long()
1188
+
1189
+ if inputs_embeds is None:
1190
+ inputs_embeds = self.embed_tokens(input_ids)
1191
+
1192
+ if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
1193
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1194
+ if is_padding_right:
1195
+ raise ValueError(
1196
+ "You are attempting to perform batched generation with padding_side='right'"
1197
+ ' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
1198
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1199
+ )
1200
+
1201
+ if self._attn_implementation == 'flash_attention_2':
1202
+ # 2d mask is passed through the layers
1203
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1204
+ else:
1205
+ # 4d mask is passed through the layers
1206
+ attention_mask = _prepare_4d_causal_attention_mask(
1207
+ attention_mask,
1208
+ (batch_size, seq_length),
1209
+ inputs_embeds,
1210
+ past_key_values_length,
1211
+ sliding_window=self.config.sliding_window,
1212
+ )
1213
+
1214
+ hidden_states = inputs_embeds
1215
+
1216
+ # decoder layers
1217
+ all_hidden_states = () if output_hidden_states else None
1218
+ all_self_attns = () if output_attentions else None
1219
+ next_decoder_cache = None
1220
+
1221
+ for decoder_layer in self.layers:
1222
+ if output_hidden_states:
1223
+ all_hidden_states += (hidden_states,)
1224
+
1225
+ if self.gradient_checkpointing and self.training:
1226
+ layer_outputs = self._gradient_checkpointing_func(
1227
+ decoder_layer.__call__,
1228
+ hidden_states,
1229
+ attention_mask,
1230
+ position_ids,
1231
+ past_key_values,
1232
+ phantom_position,
1233
+ output_attentions,
1234
+ use_cache,
1235
+ )
1236
+ else:
1237
+ layer_outputs = decoder_layer(
1238
+ hidden_states,
1239
+ attention_mask=attention_mask,
1240
+ position_ids=position_ids,
1241
+ past_key_value=past_key_values,
1242
+ phantom_position=phantom_position,
1243
+ output_attentions=output_attentions,
1244
+ use_cache=use_cache,
1245
+ )
1246
+
1247
+ hidden_states = layer_outputs[0]
1248
+
1249
+ if use_cache:
1250
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1251
+
1252
+ if output_attentions:
1253
+ all_self_attns += (layer_outputs[1],)
1254
+
1255
+ hidden_states = self.norm(hidden_states)
1256
+
1257
+ # add hidden states from the last decoder layer
1258
+ if output_hidden_states:
1259
+ all_hidden_states += (hidden_states,)
1260
+
1261
+ next_cache = None
1262
+ if use_cache:
1263
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1264
+ if not return_dict:
1265
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1266
+ return BaseModelOutputWithPast(
1267
+ last_hidden_state=hidden_states,
1268
+ past_key_values=next_cache,
1269
+ hidden_states=all_hidden_states,
1270
+ attentions=all_self_attns,
1271
+ )
1272
+
1273
+
1274
+ class Phi3ForCausalLM(Phi3PreTrainedModel):
1275
+ _tied_weights_keys = ['lm_head.weight']
1276
+
1277
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1278
+ def __init__(self, config):
1279
+ super().__init__(config)
1280
+ self.model = Phi3Model(config)
1281
+ self.vocab_size = config.vocab_size
1282
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1283
+
1284
+ # Initialize weights and apply final processing
1285
+ self.post_init()
1286
+
1287
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1288
+ def get_input_embeddings(self):
1289
+ return self.model.embed_tokens
1290
+
1291
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1292
+ def set_input_embeddings(self, value):
1293
+ self.model.embed_tokens = value
1294
+
1295
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1296
+ def get_output_embeddings(self):
1297
+ return self.lm_head
1298
+
1299
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1300
+ def set_output_embeddings(self, new_embeddings):
1301
+ self.lm_head = new_embeddings
1302
+
1303
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1304
+ def set_decoder(self, decoder):
1305
+ self.model = decoder
1306
+
1307
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1308
+ def get_decoder(self):
1309
+ return self.model
1310
+
1311
+ # Ignore copy
1312
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1313
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1314
+ def forward(
1315
+ self,
1316
+ input_ids: torch.LongTensor = None,
1317
+ attention_mask: Optional[torch.Tensor] = None,
1318
+ position_ids: Optional[torch.LongTensor] = None,
1319
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1320
+ phantom_position: torch.BoolTensor = None,
1321
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1322
+ labels: Optional[torch.LongTensor] = None,
1323
+ use_cache: Optional[bool] = None,
1324
+ output_attentions: Optional[bool] = None,
1325
+ output_hidden_states: Optional[bool] = None,
1326
+ return_dict: Optional[bool] = None,
1327
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1328
+ r"""
1329
+ Args:
1330
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1331
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1332
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1333
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1334
+
1335
+ Returns:
1336
+
1337
+ Example:
1338
+
1339
+ ```python
1340
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1341
+
1342
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1343
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1344
+
1345
+ >>> prompt = "This is an example script ."
1346
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1347
+
1348
+ >>> # Generate
1349
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1350
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1351
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1352
+ ```"""
1353
+
1354
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1355
+ output_hidden_states = (
1356
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1357
+ )
1358
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1359
+
1360
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1361
+ outputs = self.model(
1362
+ input_ids=input_ids,
1363
+ attention_mask=attention_mask,
1364
+ position_ids=position_ids,
1365
+ past_key_values=past_key_values,
1366
+ phantom_position=phantom_position,
1367
+ inputs_embeds=inputs_embeds,
1368
+ use_cache=use_cache,
1369
+ output_attentions=output_attentions,
1370
+ output_hidden_states=output_hidden_states,
1371
+ return_dict=return_dict,
1372
+ )
1373
+
1374
+ hidden_states = outputs[0]
1375
+ logits = self.lm_head(hidden_states)
1376
+ logits = logits.float()
1377
+
1378
+ loss = None
1379
+ if labels is not None:
1380
+ # Shift so that tokens < n predict n
1381
+ shift_logits = logits[..., :-1, :].contiguous()
1382
+ shift_labels = labels[..., 1:].contiguous()
1383
+ # Flatten the tokens
1384
+ loss_fct = CrossEntropyLoss()
1385
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1386
+ shift_labels = shift_labels.view(-1)
1387
+ # Enable model parallelism
1388
+ shift_labels = shift_labels.to(shift_logits.device)
1389
+ loss = loss_fct(shift_logits, shift_labels)
1390
+
1391
+ if not return_dict:
1392
+ output = (logits,) + outputs[1:]
1393
+ return (loss,) + output if loss is not None else output
1394
+
1395
+ return CausalLMOutputWithPast(
1396
+ loss=loss,
1397
+ logits=logits,
1398
+ past_key_values=outputs.past_key_values,
1399
+ hidden_states=outputs.hidden_states,
1400
+ attentions=outputs.attentions,
1401
+ )
1402
+
1403
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1404
+ def prepare_inputs_for_generation(
1405
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1406
+ ):
1407
+ if past_key_values is not None:
1408
+ if isinstance(past_key_values, Cache):
1409
+ cache_length = past_key_values.get_seq_length()
1410
+ past_length = past_key_values.seen_tokens
1411
+ max_cache_length = past_key_values.get_max_length()
1412
+ else:
1413
+ cache_length = past_length = past_key_values[0][0].shape[2]
1414
+ max_cache_length = None
1415
+
1416
+ # Keep only the unprocessed tokens:
1417
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1418
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1419
+ # input)
1420
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1421
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1422
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1423
+ # input_ids based on the past_length.
1424
+ elif past_length < input_ids.shape[1]:
1425
+ input_ids = input_ids[:, past_length:]
1426
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1427
+
1428
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1429
+ if (
1430
+ max_cache_length is not None
1431
+ and attention_mask is not None
1432
+ and cache_length + input_ids.shape[1] > max_cache_length
1433
+ ):
1434
+ attention_mask = attention_mask[:, -max_cache_length:]
1435
+
1436
+ position_ids = kwargs.get('position_ids', None)
1437
+ if attention_mask is not None and position_ids is None:
1438
+ # create position_ids on the fly for batch generation
1439
+ position_ids = attention_mask.long().cumsum(-1) - 1
1440
+ position_ids.masked_fill_(attention_mask == 0, 1)
1441
+ if past_key_values:
1442
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1443
+
1444
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1445
+ if inputs_embeds is not None and past_key_values is None:
1446
+ model_inputs = {'inputs_embeds': inputs_embeds}
1447
+ else:
1448
+ model_inputs = {'input_ids': input_ids}
1449
+
1450
+ model_inputs.update(
1451
+ {
1452
+ 'position_ids': position_ids,
1453
+ 'past_key_values': past_key_values,
1454
+ 'phantom_position' : kwargs.get('phantom_position'),
1455
+ 'use_cache': kwargs.get('use_cache'),
1456
+ 'attention_mask': attention_mask,
1457
+ }
1458
+ )
1459
+ return model_inputs
1460
+
1461
+ @staticmethod
1462
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1463
+ def _reorder_cache(past_key_values, beam_idx):
1464
+ reordered_past = ()
1465
+ for layer_past in past_key_values:
1466
+ reordered_past += (
1467
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1468
+ )
1469
+ return reordered_past
1470
+
1471
+
1472
+ @add_start_docstrings(
1473
+ """
1474
+ The [`Phi3Model`] with a sequence classification head on top (linear layer).
1475
+
1476
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1477
+ (e.g. GPT-2) do.
1478
+
1479
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1480
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1481
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1482
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1483
+ each row of the batch).
1484
+ """,
1485
+ PHI3_START_DOCSTRING,
1486
+ )
1487
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1488
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1489
+ def __init__(self, config):
1490
+ super().__init__(config)
1491
+ self.num_labels = config.num_labels
1492
+ self.model = Phi3Model(config)
1493
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1494
+
1495
+ # Initialize weights and apply final processing
1496
+ self.post_init()
1497
+
1498
+ def get_input_embeddings(self):
1499
+ return self.model.embed_tokens
1500
+
1501
+ def set_input_embeddings(self, value):
1502
+ self.model.embed_tokens = value
1503
+
1504
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1505
+ def forward(
1506
+ self,
1507
+ input_ids: torch.LongTensor = None,
1508
+ attention_mask: Optional[torch.Tensor] = None,
1509
+ position_ids: Optional[torch.LongTensor] = None,
1510
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1511
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1512
+ labels: Optional[torch.LongTensor] = None,
1513
+ use_cache: Optional[bool] = None,
1514
+ output_attentions: Optional[bool] = None,
1515
+ output_hidden_states: Optional[bool] = None,
1516
+ return_dict: Optional[bool] = None,
1517
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1518
+ r"""
1519
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1520
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1521
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1522
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1523
+ """
1524
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1525
+
1526
+ model_outputs = self.model(
1527
+ input_ids,
1528
+ attention_mask=attention_mask,
1529
+ position_ids=position_ids,
1530
+ past_key_values=past_key_values,
1531
+ inputs_embeds=inputs_embeds,
1532
+ use_cache=use_cache,
1533
+ output_attentions=output_attentions,
1534
+ output_hidden_states=output_hidden_states,
1535
+ return_dict=return_dict,
1536
+ )
1537
+ hidden_states = model_outputs[0]
1538
+ logits = self.score(hidden_states)
1539
+
1540
+ if input_ids is not None:
1541
+ batch_size = input_ids.shape[0]
1542
+ else:
1543
+ batch_size = inputs_embeds.shape[0]
1544
+
1545
+ if self.config.pad_token_id is None and batch_size != 1:
1546
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1547
+ if self.config.pad_token_id is None:
1548
+ sequence_lengths = -1
1549
+ else:
1550
+ if input_ids is not None:
1551
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1552
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1553
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1554
+ sequence_lengths = sequence_lengths.to(logits.device)
1555
+ else:
1556
+ sequence_lengths = -1
1557
+
1558
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1559
+
1560
+ loss = None
1561
+ if labels is not None:
1562
+ labels = labels.to(logits.device)
1563
+ if self.config.problem_type is None:
1564
+ if self.num_labels == 1:
1565
+ self.config.problem_type = 'regression'
1566
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1567
+ self.config.problem_type = 'single_label_classification'
1568
+ else:
1569
+ self.config.problem_type = 'multi_label_classification'
1570
+
1571
+ if self.config.problem_type == 'regression':
1572
+ loss_fct = MSELoss()
1573
+ if self.num_labels == 1:
1574
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1575
+ else:
1576
+ loss = loss_fct(pooled_logits, labels)
1577
+ elif self.config.problem_type == 'single_label_classification':
1578
+ loss_fct = CrossEntropyLoss()
1579
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1580
+ elif self.config.problem_type == 'multi_label_classification':
1581
+ loss_fct = BCEWithLogitsLoss()
1582
+ loss = loss_fct(pooled_logits, labels)
1583
+ if not return_dict:
1584
+ output = (pooled_logits,) + model_outputs[1:]
1585
+ return ((loss,) + output) if loss is not None else output
1586
+
1587
+ return SequenceClassifierOutputWithPast(
1588
+ loss=loss,
1589
+ logits=pooled_logits,
1590
+ past_key_values=model_outputs.past_key_values,
1591
+ hidden_states=model_outputs.hidden_states,
1592
+ attentions=model_outputs.attentions,
1593
+ )
1594
+
1595
+
1596
+ @add_start_docstrings(
1597
+ """
1598
+ [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1599
+ Named-Entity-Recognition (NER) tasks.
1600
+ """,
1601
+ PHI3_START_DOCSTRING,
1602
+ )
1603
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1604
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1605
+ def __init__(self, config: Phi3Config):
1606
+ super().__init__(config)
1607
+ self.num_labels = config.num_labels
1608
+
1609
+ self.model = Phi3Model(config)
1610
+ if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
1611
+ classifier_dropout = config.classifier_dropout
1612
+ elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
1613
+ classifier_dropout = config.hidden_dropout
1614
+ else:
1615
+ classifier_dropout = 0.1
1616
+ self.dropout = nn.Dropout(classifier_dropout)
1617
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1618
+
1619
+ # Initialize weights and apply final processing
1620
+ self.post_init()
1621
+
1622
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1623
+ @add_code_sample_docstrings(
1624
+ checkpoint=_CHECKPOINT_FOR_DOC,
1625
+ output_type=TokenClassifierOutput,
1626
+ config_class=_CONFIG_FOR_DOC,
1627
+ )
1628
+ def forward(
1629
+ self,
1630
+ input_ids: Optional[torch.LongTensor] = None,
1631
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1632
+ attention_mask: Optional[torch.Tensor] = None,
1633
+ inputs_embeds: Optional[torch.Tensor] = None,
1634
+ labels: Optional[torch.Tensor] = None,
1635
+ use_cache: Optional[bool] = None,
1636
+ output_attentions: Optional[bool] = None,
1637
+ output_hidden_states: Optional[bool] = None,
1638
+ return_dict: Optional[bool] = None,
1639
+ **deprecated_arguments,
1640
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1641
+ r"""
1642
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1643
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1644
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1645
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1646
+ """
1647
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1648
+
1649
+ model_outputs = self.model(
1650
+ input_ids,
1651
+ past_key_values=past_key_values,
1652
+ attention_mask=attention_mask,
1653
+ inputs_embeds=inputs_embeds,
1654
+ use_cache=use_cache,
1655
+ output_attentions=output_attentions,
1656
+ output_hidden_states=output_hidden_states,
1657
+ return_dict=return_dict,
1658
+ )
1659
+
1660
+ hidden_states = model_outputs[0]
1661
+ hidden_states = self.dropout(hidden_states)
1662
+ logits = self.classifier(hidden_states)
1663
+
1664
+ loss = None
1665
+ if labels is not None:
1666
+ # move labels to correct device to enable model parallelism
1667
+ labels = labels.to(logits.device)
1668
+ batch_size, seq_length = labels.shape
1669
+ loss_fct = CrossEntropyLoss()
1670
+ loss = loss_fct(
1671
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1672
+ )
1673
+
1674
+ if not return_dict:
1675
+ output = (logits,) + model_outputs[2:]
1676
+ return ((loss,) + output) if loss is not None else output
1677
+
1678
+ return TokenClassifierOutput(
1679
+ loss=loss,
1680
+ logits=logits,
1681
+ hidden_states=model_outputs.hidden_states,
1682
+ attentions=model_outputs.attentions,
1683
+ )
model/arch_7b/configuration_intern_vit.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Union
3
+
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ logger = logging.get_logger(__name__)
8
+
9
+
10
+ class InternVisionConfig(PretrainedConfig):
11
+ r"""
12
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
13
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
14
+
15
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
16
+ documentation from [`PretrainedConfig`] for more information.
17
+
18
+ Args:
19
+ num_channels (`int`, *optional*, defaults to 3):
20
+ Number of color channels in the input images (e.g., 3 for RGB).
21
+ patch_size (`int`, *optional*, defaults to 14):
22
+ The size (resolution) of each patch.
23
+ image_size (`int`, *optional*, defaults to 224):
24
+ The size (resolution) of each image.
25
+ qkv_bias (`bool`, *optional*, defaults to `False`):
26
+ Whether to add a bias to the queries and values in the self-attention layers.
27
+ hidden_size (`int`, *optional*, defaults to 3200):
28
+ Dimensionality of the encoder layers and the pooler layer.
29
+ num_attention_heads (`int`, *optional*, defaults to 25):
30
+ Number of attention heads for each attention layer in the Transformer encoder.
31
+ intermediate_size (`int`, *optional*, defaults to 12800):
32
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
33
+ qk_normalization (`bool`, *optional*, defaults to `True`):
34
+ Whether to normalize the queries and keys in the self-attention layers.
35
+ num_hidden_layers (`int`, *optional*, defaults to 48):
36
+ Number of hidden layers in the Transformer encoder.
37
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
38
+ Whether to use flash attention mechanism.
39
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
40
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
41
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
42
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
43
+ The epsilon used by the layer normalization layers.
44
+ dropout (`float`, *optional*, defaults to 0.0):
45
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
46
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
47
+ Dropout rate for stochastic depth.
48
+ attention_dropout (`float`, *optional*, defaults to 0.0):
49
+ The dropout ratio for the attention probabilities.
50
+ initializer_range (`float`, *optional*, defaults to 0.02):
51
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
52
+ initializer_factor (`float`, *optional*, defaults to 0.1):
53
+ A factor for layer scale.
54
+ """
55
+
56
+ model_type = 'intern_vit_300m'
57
+
58
+ def __init__(
59
+ self,
60
+ num_channels=3,
61
+ patch_size=14,
62
+ image_size=224,
63
+ qkv_bias=False,
64
+ hidden_size=3200,
65
+ num_attention_heads=25,
66
+ intermediate_size=12800,
67
+ qk_normalization=True,
68
+ num_hidden_layers=48,
69
+ use_flash_attn=True,
70
+ hidden_act='gelu',
71
+ norm_type='rms_norm',
72
+ layer_norm_eps=1e-6,
73
+ dropout=0.0,
74
+ drop_path_rate=0.0,
75
+ attention_dropout=0.0,
76
+ initializer_range=0.02,
77
+ initializer_factor=0.1,
78
+ **kwargs,
79
+ ):
80
+ super().__init__(**kwargs)
81
+
82
+ self.hidden_size = hidden_size
83
+ self.intermediate_size = intermediate_size
84
+ self.dropout = dropout
85
+ self.drop_path_rate = drop_path_rate
86
+ self.num_hidden_layers = num_hidden_layers
87
+ self.num_attention_heads = num_attention_heads
88
+ self.num_channels = num_channels
89
+ self.patch_size = patch_size
90
+ self.image_size = image_size
91
+ self.initializer_range = initializer_range
92
+ self.initializer_factor = initializer_factor
93
+ self.attention_dropout = attention_dropout
94
+ self.layer_norm_eps = layer_norm_eps
95
+ self.hidden_act = hidden_act
96
+ self.norm_type = norm_type
97
+ self.qkv_bias = qkv_bias
98
+ self.qk_normalization = qk_normalization
99
+ self.use_flash_attn = use_flash_attn
100
+
101
+ @classmethod
102
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
103
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
104
+
105
+ if 'vision_config' in config_dict:
106
+ config_dict = config_dict['vision_config']
107
+
108
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
109
+ logger.warning(
110
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
111
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
112
+ )
113
+
114
+ return cls.from_dict(config_dict, **kwargs)
model/arch_7b/configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
model/arch_7b/configuration_phantom.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from transformers import LlamaConfig
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+
7
+ from .configuration_intern_vit import InternVisionConfig
8
+ from .configuration_internlm2 import InternLM2Config
9
+
10
+ logger = logging.get_logger(__name__)
11
+
12
+
13
+ class PhantomConfig(PretrainedConfig):
14
+ model_type = 'phantom'
15
+ is_composition = True
16
+
17
+ def __init__(
18
+ self,
19
+ vision_config=None,
20
+ llm_config=None,
21
+ use_backbone_lora=0,
22
+ use_llm_lora=0,
23
+ force_image_size=None,
24
+ downsample_ratio=0.5,
25
+ template=None,
26
+ dynamic_image_size=False,
27
+ use_thumbnail=False,
28
+ min_dynamic_patch=1,
29
+ max_dynamic_patch=6,
30
+ **kwargs):
31
+ super().__init__(**kwargs)
32
+
33
+ if vision_config is None:
34
+ vision_config = {}
35
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
36
+
37
+ if llm_config is None:
38
+ llm_config = {}
39
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
40
+
41
+ self.vision_config = InternVisionConfig(**vision_config)
42
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
43
+ self.llm_config = LlamaConfig(**llm_config)
44
+ elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
45
+ self.llm_config = InternLM2Config(**llm_config)
46
+ else:
47
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
48
+ self.use_backbone_lora = use_backbone_lora
49
+ self.use_llm_lora = use_llm_lora
50
+ self.force_image_size = force_image_size
51
+ self.downsample_ratio = downsample_ratio
52
+ self.template = template
53
+ self.dynamic_image_size = dynamic_image_size
54
+ self.use_thumbnail = use_thumbnail
55
+ self.min_dynamic_patch = min_dynamic_patch
56
+ self.max_dynamic_patch = max_dynamic_patch
57
+
58
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
59
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
60
+
61
+ def to_dict(self):
62
+ """
63
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
64
+
65
+ Returns:
66
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
67
+ """
68
+ output = copy.deepcopy(self.__dict__)
69
+ output['vision_config'] = self.vision_config.to_dict()
70
+ output['llm_config'] = self.llm_config.to_dict()
71
+ output['model_type'] = self.__class__.model_type
72
+ output['use_backbone_lora'] = self.use_backbone_lora
73
+ output['use_llm_lora'] = self.use_llm_lora
74
+ output['force_image_size'] = self.force_image_size
75
+ output['downsample_ratio'] = self.downsample_ratio
76
+ output['template'] = self.template
77
+ output['dynamic_image_size'] = self.dynamic_image_size
78
+ output['use_thumbnail'] = self.use_thumbnail
79
+ output['min_dynamic_patch'] = self.min_dynamic_patch
80
+ output['max_dynamic_patch'] = self.max_dynamic_patch
81
+
82
+ return output
model/arch_7b/modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ import torch.utils.checkpoint
6
+ from einops import rearrange
7
+ from timm.models.layers import DropPath
8
+ from torch import nn
9
+ from transformers.activations import ACT2FN
10
+ from transformers.modeling_outputs import (BaseModelOutput,
11
+ BaseModelOutputWithPooling)
12
+ from transformers.modeling_utils import PreTrainedModel
13
+ from transformers.utils import logging
14
+
15
+ from .configuration_intern_vit import InternVisionConfig
16
+
17
+ try:
18
+ try: # v1
19
+ from flash_attn.flash_attn_interface import \
20
+ flash_attn_unpadded_qkvpacked_func
21
+ except: # v2
22
+ from flash_attn.flash_attn_interface import \
23
+ flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
24
+
25
+ from flash_attn.bert_padding import pad_input, unpad_input
26
+
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_unpadded_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_unpadded_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = False
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
model/arch_7b/modeling_internlm2.py ADDED
@@ -0,0 +1,1487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ # Phantom
46
+ from utils.utils import *
47
+
48
+ logger = logging.get_logger(__name__)
49
+
50
+ _CONFIG_FOR_DOC = 'InternLM2Config'
51
+
52
+ flash_attn_func, flash_attn_varlen_func = None, None
53
+ pad_input, index_first_axis, unpad_input = None, None, None
54
+ try:
55
+ from flash_attn import flash_attn_func as _flash_attn_func
56
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
57
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
58
+ from flash_attn.bert_padding import pad_input as _pad_input
59
+ from flash_attn.bert_padding import unpad_input as _unpad_input
60
+
61
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
62
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
63
+ has_flash_attn = True
64
+ except:
65
+ has_flash_attn = False
66
+
67
+
68
+ def _import_flash_attn():
69
+ global flash_attn_func, flash_attn_varlen_func
70
+ global pad_input, index_first_axis, unpad_input
71
+ try:
72
+ from flash_attn import flash_attn_func as _flash_attn_func
73
+ from flash_attn import \
74
+ flash_attn_varlen_func as _flash_attn_varlen_func
75
+ from flash_attn.bert_padding import \
76
+ index_first_axis as _index_first_axis
77
+ from flash_attn.bert_padding import pad_input as _pad_input
78
+ from flash_attn.bert_padding import unpad_input as _unpad_input
79
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
80
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
81
+ except ImportError:
82
+ raise ImportError('flash_attn is not installed.')
83
+
84
+
85
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
86
+ def _get_unpad_data(attention_mask):
87
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
88
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
89
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
90
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
91
+ return (
92
+ indices,
93
+ cu_seqlens,
94
+ max_seqlen_in_batch,
95
+ )
96
+
97
+
98
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
99
+ def _make_causal_mask(
100
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
101
+ ):
102
+ """
103
+ Make causal mask used for bi-directional self-attention.
104
+ """
105
+ bsz, tgt_len = input_ids_shape
106
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
107
+ mask_cond = torch.arange(mask.size(-1), device=device)
108
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
109
+ mask = mask.to(dtype)
110
+
111
+ if past_key_values_length > 0:
112
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
113
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
114
+
115
+
116
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
117
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
118
+ """
119
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
120
+ """
121
+ bsz, src_len = mask.size()
122
+ tgt_len = tgt_len if tgt_len is not None else src_len
123
+
124
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
125
+
126
+ inverted_mask = 1.0 - expanded_mask
127
+
128
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
129
+
130
+
131
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
132
+ class InternLM2RMSNorm(nn.Module):
133
+ def __init__(self, hidden_size, eps=1e-6):
134
+ """
135
+ InternLM2RMSNorm is equivalent to T5LayerNorm
136
+ """
137
+ super().__init__()
138
+ self.weight = nn.Parameter(torch.ones(hidden_size))
139
+ self.variance_epsilon = eps
140
+
141
+ def forward(self, hidden_states):
142
+ input_dtype = hidden_states.dtype
143
+ hidden_states = hidden_states.to(torch.float32)
144
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
145
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
146
+ return self.weight * hidden_states.to(input_dtype)
147
+
148
+
149
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
150
+ class InternLM2RotaryEmbedding(nn.Module):
151
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
152
+ super().__init__()
153
+
154
+ self.dim = dim
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.base = base
157
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
158
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
159
+
160
+ # Build here to make `torch.jit.trace` work.
161
+ self._set_cos_sin_cache(
162
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
163
+ )
164
+
165
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
166
+ self.max_seq_len_cached = seq_len
167
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
168
+
169
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
170
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
171
+ emb = torch.cat((freqs, freqs), dim=-1)
172
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
173
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
174
+
175
+ def forward(self, x, seq_len=None):
176
+ # x: [bs, num_attention_heads, seq_len, head_size]
177
+ if seq_len > self.max_seq_len_cached:
178
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
179
+
180
+ return (
181
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
182
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
183
+ )
184
+
185
+
186
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
187
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
188
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
189
+
190
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
191
+ self.scaling_factor = scaling_factor
192
+ super().__init__(dim, max_position_embeddings, base, device)
193
+
194
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
195
+ self.max_seq_len_cached = seq_len
196
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
197
+ t = t / self.scaling_factor
198
+
199
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
200
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
201
+ emb = torch.cat((freqs, freqs), dim=-1)
202
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
203
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
204
+
205
+
206
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
207
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
208
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
209
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
210
+ """
211
+
212
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
213
+ self.scaling_factor = scaling_factor
214
+ super().__init__(dim, max_position_embeddings, base, device)
215
+
216
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
217
+ self.max_seq_len_cached = seq_len
218
+
219
+ if seq_len > self.max_position_embeddings:
220
+ base = self.base * (
221
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
222
+ ) ** (self.dim / (self.dim - 2))
223
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
224
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
225
+
226
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
227
+
228
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
229
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
230
+ emb = torch.cat((freqs, freqs), dim=-1)
231
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
232
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
233
+
234
+
235
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
236
+ def rotate_half(x):
237
+ """Rotates half the hidden dims of the input."""
238
+ x1 = x[..., : x.shape[-1] // 2]
239
+ x2 = x[..., x.shape[-1] // 2 :]
240
+ return torch.cat((-x2, x1), dim=-1)
241
+
242
+
243
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
244
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
245
+ """Applies Rotary Position Embedding to the query and key tensors."""
246
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
247
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
248
+ q_embed = (q * cos) + (rotate_half(q) * sin)
249
+ k_embed = (k * cos) + (rotate_half(k) * sin)
250
+ return q_embed, k_embed
251
+
252
+
253
+ class InternLM2MLP(nn.Module):
254
+ def __init__(self, config):
255
+ super().__init__()
256
+ self.config = config
257
+ self.hidden_size = config.hidden_size
258
+ self.intermediate_size = config.intermediate_size
259
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
260
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
261
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
262
+ self.act_fn = ACT2FN[config.hidden_act]
263
+
264
+ def forward(self, x):
265
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
266
+
267
+ return down_proj
268
+
269
+
270
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
271
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
272
+ """
273
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
274
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
275
+ """
276
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
277
+ if n_rep == 1:
278
+ return hidden_states
279
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
280
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
281
+
282
+
283
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
284
+ class InternLM2Attention(nn.Module):
285
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
286
+
287
+ def __init__(self, config: InternLM2Config):
288
+ super().__init__()
289
+ self.config = config
290
+ self.hidden_size = config.hidden_size
291
+ self.num_heads = config.num_attention_heads
292
+ self.head_dim = self.hidden_size // self.num_heads
293
+ self.num_key_value_heads = config.num_key_value_heads
294
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
295
+ self.max_position_embeddings = config.max_position_embeddings
296
+ self.is_causal = True
297
+
298
+ if (self.head_dim * self.num_heads) != self.hidden_size:
299
+ raise ValueError(
300
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
301
+ f' and `num_heads`: {self.num_heads}).'
302
+ )
303
+
304
+ self.wqkv = nn.Linear(
305
+ self.hidden_size,
306
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
307
+ bias=config.bias,
308
+ )
309
+
310
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
311
+ self._init_rope()
312
+
313
+ """
314
+ Phantom
315
+ """
316
+ # Phantom Init
317
+ self.turn_on_phantom=True
318
+ self.xattn_query_phantom = XAttention(self.head_dim)
319
+ self.xattn_key_phantom = XAttention(self.head_dim)
320
+ self.xattn_value_phantom = XAttention(self.head_dim)
321
+ self.gating_phantom_1 = nn.Linear(self.head_dim, 1)
322
+ self.gating_phantom_2 = nn.Linear(self.head_dim, 1)
323
+
324
+ def _init_rope(self):
325
+ if self.config.rope_scaling is None:
326
+ self.rotary_emb = InternLM2RotaryEmbedding(
327
+ self.head_dim,
328
+ max_position_embeddings=self.max_position_embeddings,
329
+ base=self.config.rope_theta,
330
+ )
331
+ else:
332
+ scaling_type = self.config.rope_scaling['type']
333
+ scaling_factor = self.config.rope_scaling['factor']
334
+ if scaling_type == 'dynamic':
335
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
336
+ self.head_dim,
337
+ max_position_embeddings=self.max_position_embeddings,
338
+ base=self.config.rope_theta,
339
+ scaling_factor=scaling_factor,
340
+ )
341
+ elif scaling_type == 'linear':
342
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
343
+ self.head_dim,
344
+ max_position_embeddings=self.max_position_embeddings,
345
+ base=self.config.rope_theta,
346
+ scaling_factor=scaling_factor,
347
+ )
348
+ else:
349
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
350
+ return self.rotary_emb
351
+
352
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
353
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
354
+
355
+ def forward(
356
+ self,
357
+ hidden_states: torch.Tensor,
358
+ attention_mask: Optional[torch.Tensor] = None,
359
+ position_ids: Optional[torch.LongTensor] = None,
360
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
361
+ output_attentions: bool = False,
362
+ use_cache: bool = False,
363
+ **kwargs,
364
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
365
+ if 'padding_mask' in kwargs:
366
+ warnings.warn(
367
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
368
+ 'Please make sure use `attention_mask` instead.`'
369
+ )
370
+
371
+ bsz, q_len, _ = hidden_states.size()
372
+
373
+ qkv_states = self.wqkv(hidden_states)
374
+
375
+ qkv_states = rearrange(
376
+ qkv_states,
377
+ 'b q (h gs d) -> b q h gs d',
378
+ gs=2 + self.num_key_value_groups,
379
+ d=self.head_dim,
380
+ )
381
+
382
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
383
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
384
+ key_states = qkv_states[..., -2, :]
385
+ value_states = qkv_states[..., -1, :]
386
+
387
+ query_states = query_states.transpose(1, 2)
388
+ key_states = key_states.transpose(1, 2)
389
+ value_states = value_states.transpose(1, 2)
390
+
391
+ kv_seq_len = key_states.shape[-2]
392
+ if past_key_value is not None:
393
+ kv_seq_len += past_key_value[0].shape[-2]
394
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
395
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
396
+
397
+ if past_key_value is not None:
398
+ # reuse k, v, self_attention
399
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
400
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
401
+
402
+ past_key_value = (key_states, value_states) if use_cache else None
403
+
404
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
405
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
406
+
407
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
408
+
409
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
410
+ raise ValueError(
411
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
412
+ f' {attn_weights.size()}'
413
+ )
414
+
415
+ if attention_mask is not None:
416
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
417
+ raise ValueError(
418
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
419
+ )
420
+ attn_weights = attn_weights + attention_mask
421
+
422
+ # upcast attention to fp32
423
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
424
+ attn_output = torch.matmul(attn_weights, value_states)
425
+
426
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
427
+ raise ValueError(
428
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
429
+ f' {attn_output.size()}'
430
+ )
431
+
432
+ attn_output = attn_output.transpose(1, 2).contiguous()
433
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
434
+
435
+ attn_output = self.wo(attn_output)
436
+
437
+ if not output_attentions:
438
+ attn_weights = None
439
+
440
+ return attn_output, attn_weights, past_key_value
441
+
442
+
443
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
444
+ class InternLM2FlashAttention2(InternLM2Attention):
445
+ """
446
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
447
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
448
+ flash attention and deal with padding tokens in case the input contains any of them.
449
+ """
450
+
451
+ def forward(
452
+ self,
453
+ hidden_states: torch.Tensor,
454
+ attention_mask: Optional[torch.LongTensor] = None,
455
+ position_ids: Optional[torch.LongTensor] = None,
456
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
457
+ phantom_position: torch.BoolTensor = None,
458
+ output_attentions: bool = False,
459
+ use_cache: bool = False,
460
+ **kwargs,
461
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
462
+ # InternLM2FlashAttention2 attention does not support output_attentions
463
+ if 'padding_mask' in kwargs:
464
+ warnings.warn(
465
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
466
+ 'Please make sure use `attention_mask` instead.`'
467
+ )
468
+
469
+ # overwrite attention_mask with padding_mask
470
+ attention_mask = kwargs.pop('padding_mask')
471
+
472
+ output_attentions = False
473
+
474
+ bsz, q_len, _ = hidden_states.size()
475
+
476
+ qkv_states = self.wqkv(hidden_states)
477
+
478
+ qkv_states = rearrange(
479
+ qkv_states,
480
+ 'b q (h gs d) -> b q h gs d',
481
+ gs=2 + self.num_key_value_groups,
482
+ d=self.head_dim,
483
+ )
484
+
485
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
486
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
487
+ key_states = qkv_states[..., -2, :]
488
+ value_states = qkv_states[..., -1, :]
489
+
490
+ query_states = query_states.transpose(1, 2)
491
+ key_states = key_states.transpose(1, 2)
492
+ value_states = value_states.transpose(1, 2)
493
+
494
+ kv_seq_len = key_states.shape[-2]
495
+ if past_key_value is not None:
496
+ kv_seq_len += past_key_value[0].shape[-2]
497
+
498
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
499
+
500
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
501
+
502
+ if past_key_value is not None:
503
+ # reuse k, v, self_attention
504
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
505
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
506
+
507
+ past_key_value = (key_states, value_states) if use_cache else None
508
+
509
+ query_states = query_states.transpose(1, 2)
510
+ key_states = key_states.transpose(1, 2)
511
+ value_states = value_states.transpose(1, 2)
512
+
513
+ attn_output = self._flash_attention_forward(
514
+ query_states, key_states, value_states, attention_mask, q_len, phantom_position
515
+ )
516
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
517
+ attn_output = self.wo(attn_output)
518
+
519
+ if not output_attentions:
520
+ attn_weights = None
521
+
522
+ return attn_output, attn_weights, past_key_value
523
+
524
+ def _flash_attention_forward(
525
+ self, query_states, key_states, value_states, attention_mask, query_length, phantom_position, dropout=0.0, softmax_scale=None
526
+ ):
527
+ """
528
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
529
+ first unpad the input, then computes the attention scores and pad the final attention scores.
530
+
531
+ Args:
532
+ query_states (`torch.Tensor`):
533
+ Input query states to be passed to Flash Attention API
534
+ key_states (`torch.Tensor`):
535
+ Input key states to be passed to Flash Attention API
536
+ value_states (`torch.Tensor`):
537
+ Input value states to be passed to Flash Attention API
538
+ attention_mask (`torch.Tensor`):
539
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
540
+ position of padding tokens and 1 for the position of non-padding tokens.
541
+ dropout (`int`, *optional*):
542
+ Attention dropout
543
+ softmax_scale (`float`, *optional*):
544
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
545
+ """
546
+
547
+ """
548
+ Phantom
549
+ """
550
+ if self.turn_on_phantom:
551
+
552
+ # [Important] softmax_scale
553
+ softmax_scale = 1 / math.sqrt(query_states.shape[-1])
554
+
555
+ query_states_phantom = []
556
+ key_states_phantom = []
557
+ value_states_phantom = []
558
+ for index, pos in enumerate(phantom_position):
559
+ if query_states.shape[1] > 1:
560
+ query_states_phantom.append(query_states[index][pos])
561
+ key_states_phantom.append(key_states[index][pos])
562
+ value_states_phantom.append(value_states[index][pos])
563
+
564
+ # saving phantom qkv for inference
565
+ self.query_states_phantom = query_states_phantom
566
+ self.key_states_phantom = key_states_phantom
567
+ self.value_states_phantom = value_states_phantom
568
+
569
+ # phantom qkv: list to tensor
570
+ query_states_phantom = torch.stack(self.query_states_phantom)
571
+ key_states_phantom = torch.stack(self.key_states_phantom)
572
+ value_states_phantom = torch.stack(self.value_states_phantom)
573
+
574
+ # phantom qkv: 1 -> N (sequence)
575
+ query_states_phantom = self.xattn_query_phantom(q=query_states, k=query_states_phantom, v=query_states_phantom)
576
+ key_states_phantom = self.xattn_key_phantom(q=key_states, k=key_states_phantom, v=key_states_phantom)
577
+ value_states_phantom = self.xattn_value_phantom(q=value_states, k=value_states_phantom, v=value_states_phantom, is_residual=True)
578
+
579
+ # concat original qkv and phantom qkv for hidden-dimension / heads
580
+ query_states = torch.cat([query_states, query_states_phantom], dim=3)
581
+ key_states = torch.cat([key_states, key_states_phantom], dim=3)
582
+ value_states = torch.cat([value_states, value_states_phantom], dim=3)
583
+
584
+ # Contains at least one padding token in the sequence
585
+ causal = self.is_causal and query_length != 1
586
+ if attention_mask is not None:
587
+ batch_size = query_states.shape[0]
588
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
589
+ query_states, key_states, value_states, attention_mask, query_length
590
+ )
591
+
592
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
593
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
594
+
595
+ attn_output_unpad = flash_attn_varlen_func(
596
+ query_states,
597
+ key_states,
598
+ value_states,
599
+ cu_seqlens_q=cu_seqlens_q,
600
+ cu_seqlens_k=cu_seqlens_k,
601
+ max_seqlen_q=max_seqlen_in_batch_q,
602
+ max_seqlen_k=max_seqlen_in_batch_k,
603
+ dropout_p=dropout,
604
+ softmax_scale=softmax_scale,
605
+ causal=causal,
606
+ )
607
+
608
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
609
+ else:
610
+ attn_output = flash_attn_func(
611
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
612
+ )
613
+
614
+ """
615
+ Phantom
616
+ """
617
+ if self.turn_on_phantom:
618
+ half_dim = attn_output.shape[-1] // 2
619
+ half1_o = attn_output[...,:half_dim]
620
+ half2_o = attn_output[...,half_dim:]
621
+ weight1 = self.gating_phantom_1(half1_o)
622
+ weight2 = self.gating_phantom_2(half2_o)
623
+ weight_norm = weight1.exp() / (weight1.exp() + weight2.exp())
624
+ attn_output = weight_norm * half1_o + (1-weight_norm) * half2_o
625
+ return attn_output
626
+
627
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
628
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
629
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
630
+
631
+ key_layer = index_first_axis(
632
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
633
+ )
634
+ value_layer = index_first_axis(
635
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
636
+ )
637
+
638
+ if query_length == kv_seq_len:
639
+ query_layer = index_first_axis(
640
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
641
+ )
642
+ cu_seqlens_q = cu_seqlens_k
643
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
644
+ indices_q = indices_k
645
+ elif query_length == 1:
646
+ max_seqlen_in_batch_q = 1
647
+ cu_seqlens_q = torch.arange(
648
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
649
+ ) # There is a memcpy here, that is very bad.
650
+ indices_q = cu_seqlens_q[:-1]
651
+ query_layer = query_layer.squeeze(1)
652
+ else:
653
+ # The -q_len: slice assumes left padding.
654
+ attention_mask = attention_mask[:, -query_length:]
655
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
656
+
657
+ return (
658
+ query_layer,
659
+ key_layer,
660
+ value_layer,
661
+ indices_q.to(torch.int64),
662
+ (cu_seqlens_q, cu_seqlens_k),
663
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
664
+ )
665
+
666
+
667
+ INTERNLM2_ATTENTION_CLASSES = {
668
+ 'eager': InternLM2Attention,
669
+ 'flash_attention_2': InternLM2FlashAttention2,
670
+ }
671
+
672
+
673
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
674
+ class InternLM2DecoderLayer(nn.Module):
675
+ def __init__(self, config: InternLM2Config):
676
+ super().__init__()
677
+ self.hidden_size = config.hidden_size
678
+
679
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
680
+
681
+ self.feed_forward = InternLM2MLP(config)
682
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
683
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
684
+
685
+ def forward(
686
+ self,
687
+ hidden_states: torch.Tensor,
688
+ attention_mask: Optional[torch.Tensor] = None,
689
+ position_ids: Optional[torch.LongTensor] = None,
690
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
691
+ phantom_position: torch.BoolTensor = None,
692
+ output_attentions: Optional[bool] = False,
693
+ use_cache: Optional[bool] = False,
694
+ **kwargs,
695
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
696
+ """
697
+ Args:
698
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
699
+ attention_mask (`torch.FloatTensor`, *optional*):
700
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
701
+ query_sequence_length, key_sequence_length)` if default attention is used.
702
+ output_attentions (`bool`, *optional*):
703
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
704
+ returned tensors for more detail.
705
+ use_cache (`bool`, *optional*):
706
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
707
+ (see `past_key_values`).
708
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
709
+ """
710
+ if 'padding_mask' in kwargs:
711
+ warnings.warn(
712
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
713
+ 'Please make sure use `attention_mask` instead.`'
714
+ )
715
+
716
+ residual = hidden_states
717
+
718
+ hidden_states = self.attention_norm(hidden_states)
719
+
720
+ # Self Attention
721
+ hidden_states, self_attn_weights, present_key_value = self.attention(
722
+ hidden_states=hidden_states,
723
+ attention_mask=attention_mask,
724
+ position_ids=position_ids,
725
+ past_key_value=past_key_value,
726
+ phantom_position=phantom_position,
727
+ output_attentions=output_attentions,
728
+ use_cache=use_cache,
729
+ **kwargs,
730
+ )
731
+ hidden_states = residual + hidden_states
732
+
733
+ # Fully Connected
734
+ residual = hidden_states
735
+ hidden_states = self.ffn_norm(hidden_states)
736
+ hidden_states = self.feed_forward(hidden_states)
737
+ hidden_states = residual + hidden_states
738
+
739
+ outputs = (hidden_states,)
740
+
741
+ if output_attentions:
742
+ outputs += (self_attn_weights,)
743
+
744
+ if use_cache:
745
+ outputs += (present_key_value,)
746
+
747
+ return outputs
748
+
749
+
750
+ InternLM2_START_DOCSTRING = r"""
751
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
752
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
753
+ etc.)
754
+
755
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
756
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
757
+ and behavior.
758
+
759
+ Parameters:
760
+ config ([`InternLM2Config`]):
761
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
762
+ load the weights associated with the model, only the configuration. Check out the
763
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
764
+ """
765
+
766
+
767
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
768
+ @add_start_docstrings(
769
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
770
+ InternLM2_START_DOCSTRING,
771
+ )
772
+ class InternLM2PreTrainedModel(PreTrainedModel):
773
+ config_class = InternLM2Config
774
+ base_model_prefix = 'model'
775
+ supports_gradient_checkpointing = True
776
+ _no_split_modules = ['InternLM2DecoderLayer']
777
+ _skip_keys_device_placement = 'past_key_values'
778
+ _supports_flash_attn_2 = True
779
+
780
+ def _init_weights(self, module):
781
+ std = self.config.initializer_range
782
+ if isinstance(module, nn.Linear):
783
+ module.weight.data.normal_(mean=0.0, std=std)
784
+ if module.bias is not None:
785
+ module.bias.data.zero_()
786
+ elif isinstance(module, nn.Embedding):
787
+ module.weight.data.normal_(mean=0.0, std=std)
788
+ if module.padding_idx is not None:
789
+ module.weight.data[module.padding_idx].zero_()
790
+
791
+
792
+ InternLM2_INPUTS_DOCSTRING = r"""
793
+ Args:
794
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
795
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
796
+ it.
797
+
798
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
799
+ [`PreTrainedTokenizer.__call__`] for details.
800
+
801
+ [What are input IDs?](../glossary#input-ids)
802
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
803
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
804
+
805
+ - 1 for tokens that are **not masked**,
806
+ - 0 for tokens that are **masked**.
807
+
808
+ [What are attention masks?](../glossary#attention-mask)
809
+
810
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
811
+ [`PreTrainedTokenizer.__call__`] for details.
812
+
813
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
814
+ `past_key_values`).
815
+
816
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
817
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
818
+ information on the default strategy.
819
+
820
+ - 1 indicates the head is **not masked**,
821
+ - 0 indicates the head is **masked**.
822
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
823
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
824
+ config.n_positions - 1]`.
825
+
826
+ [What are position IDs?](../glossary#position-ids)
827
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
828
+ when `config.use_cache=True`):
829
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
830
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
831
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
832
+
833
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
834
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
835
+
836
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
837
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
838
+ of shape `(batch_size, sequence_length)`.
839
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
840
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
841
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
842
+ model's internal embedding lookup matrix.
843
+ use_cache (`bool`, *optional*):
844
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
845
+ `past_key_values`).
846
+ output_attentions (`bool`, *optional*):
847
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
848
+ tensors for more detail.
849
+ output_hidden_states (`bool`, *optional*):
850
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
851
+ more detail.
852
+ return_dict (`bool`, *optional*):
853
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
854
+ """
855
+
856
+
857
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
858
+ @add_start_docstrings(
859
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
860
+ InternLM2_START_DOCSTRING,
861
+ )
862
+ class InternLM2Model(InternLM2PreTrainedModel):
863
+ """
864
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
865
+
866
+ Args:
867
+ config: InternLM2Config
868
+ """
869
+
870
+ _auto_class = 'AutoModel'
871
+
872
+ def __init__(self, config: InternLM2Config):
873
+ super().__init__(config)
874
+ self.padding_idx = config.pad_token_id
875
+ self.vocab_size = config.vocab_size
876
+ self.config = config
877
+ if not has_flash_attn:
878
+ self.config.attn_implementation = 'eager'
879
+ print('Warning: Flash attention is not available, using eager attention instead.')
880
+
881
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
882
+
883
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
884
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
885
+
886
+ self.gradient_checkpointing = False
887
+ # Initialize weights and apply final processing
888
+ self.post_init()
889
+
890
+ def get_input_embeddings(self):
891
+ return self.tok_embeddings
892
+
893
+ def set_input_embeddings(self, value):
894
+ self.tok_embeddings = value
895
+
896
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
897
+ # create causal mask
898
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
899
+ combined_attention_mask = None
900
+ if input_shape[-1] > 1:
901
+ combined_attention_mask = _make_causal_mask(
902
+ input_shape,
903
+ inputs_embeds.dtype,
904
+ device=inputs_embeds.device,
905
+ past_key_values_length=past_key_values_length,
906
+ )
907
+
908
+ if attention_mask is not None:
909
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
910
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
911
+ inputs_embeds.device
912
+ )
913
+ combined_attention_mask = (
914
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
915
+ )
916
+
917
+ return combined_attention_mask
918
+
919
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
920
+ def forward(
921
+ self,
922
+ input_ids: torch.LongTensor = None,
923
+ attention_mask: Optional[torch.Tensor] = None,
924
+ position_ids: Optional[torch.LongTensor] = None,
925
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
926
+ phantom_position: torch.BoolTensor = None,
927
+ inputs_embeds: Optional[torch.FloatTensor] = None,
928
+ use_cache: Optional[bool] = None,
929
+ output_attentions: Optional[bool] = None,
930
+ output_hidden_states: Optional[bool] = None,
931
+ return_dict: Optional[bool] = None,
932
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
933
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
934
+ output_hidden_states = (
935
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
936
+ )
937
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
938
+
939
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
940
+
941
+ if self.config.attn_implementation == 'flash_attention_2':
942
+ _import_flash_attn()
943
+
944
+ # retrieve input_ids and inputs_embeds
945
+ if input_ids is not None and inputs_embeds is not None:
946
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
947
+ elif input_ids is not None:
948
+ batch_size, seq_length = input_ids.shape[:2]
949
+ elif inputs_embeds is not None:
950
+ batch_size, seq_length = inputs_embeds.shape[:2]
951
+ else:
952
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
953
+
954
+ seq_length_with_past = seq_length
955
+ past_key_values_length = 0
956
+ if past_key_values is not None:
957
+ past_key_values_length = past_key_values[0][0].shape[2]
958
+ seq_length_with_past = seq_length_with_past + past_key_values_length
959
+
960
+ if position_ids is None:
961
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
962
+ position_ids = torch.arange(
963
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
964
+ )
965
+ position_ids = position_ids.unsqueeze(0)
966
+
967
+ if inputs_embeds is None:
968
+ inputs_embeds = self.tok_embeddings(input_ids)
969
+
970
+ if self.config.attn_implementation == 'flash_attention_2':
971
+ # 2d mask is passed through the layers
972
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
973
+ else:
974
+ if attention_mask is None:
975
+ attention_mask = torch.ones(
976
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
977
+ )
978
+ attention_mask = self._prepare_decoder_attention_mask(
979
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
980
+ )
981
+
982
+ # embed positions
983
+ hidden_states = inputs_embeds
984
+
985
+ if self.gradient_checkpointing and self.training:
986
+ if use_cache:
987
+ logger.warning_once(
988
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
989
+ )
990
+ use_cache = False
991
+
992
+ # decoder layers
993
+ all_hidden_states = () if output_hidden_states else None
994
+ all_self_attns = () if output_attentions else None
995
+ next_decoder_cache = () if use_cache else None
996
+
997
+ for idx, decoder_layer in enumerate(self.layers):
998
+ if output_hidden_states:
999
+ all_hidden_states += (hidden_states,)
1000
+
1001
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1002
+
1003
+ if self.gradient_checkpointing and self.training:
1004
+
1005
+ def create_custom_forward(module):
1006
+ def custom_forward(*inputs):
1007
+ # None for past_key_value
1008
+ return module(*inputs, output_attentions, None)
1009
+
1010
+ return custom_forward
1011
+
1012
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1013
+ create_custom_forward(decoder_layer),
1014
+ hidden_states,
1015
+ attention_mask,
1016
+ position_ids,
1017
+ None,
1018
+ phantom_position
1019
+ )
1020
+ else:
1021
+ layer_outputs = decoder_layer(
1022
+ hidden_states,
1023
+ attention_mask=attention_mask,
1024
+ position_ids=position_ids,
1025
+ past_key_value=past_key_value,
1026
+ phantom_position=phantom_position,
1027
+ output_attentions=output_attentions,
1028
+ use_cache=use_cache,
1029
+ )
1030
+
1031
+ hidden_states = layer_outputs[0]
1032
+
1033
+ if use_cache:
1034
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1035
+
1036
+ if output_attentions:
1037
+ all_self_attns += (layer_outputs[1],)
1038
+
1039
+ hidden_states = self.norm(hidden_states)
1040
+
1041
+ # add hidden states from the last decoder layer
1042
+ if output_hidden_states:
1043
+ all_hidden_states += (hidden_states,)
1044
+
1045
+ next_cache = next_decoder_cache if use_cache else None
1046
+ if not return_dict:
1047
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1048
+ return BaseModelOutputWithPast(
1049
+ last_hidden_state=hidden_states,
1050
+ past_key_values=next_cache,
1051
+ hidden_states=all_hidden_states,
1052
+ attentions=all_self_attns,
1053
+ )
1054
+
1055
+
1056
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
1057
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1058
+ _auto_class = 'AutoModelForCausalLM'
1059
+
1060
+ _tied_weights_keys = ['output.weight']
1061
+
1062
+ def __init__(self, config):
1063
+ super().__init__(config)
1064
+ self.model = InternLM2Model(config)
1065
+ self.vocab_size = config.vocab_size
1066
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1067
+
1068
+ # Initialize weights and apply final processing
1069
+ self.post_init()
1070
+
1071
+ def get_input_embeddings(self):
1072
+ return self.model.tok_embeddings
1073
+
1074
+ def set_input_embeddings(self, value):
1075
+ self.model.tok_embeddings = value
1076
+
1077
+ def get_output_embeddings(self):
1078
+ return self.output
1079
+
1080
+ def set_output_embeddings(self, new_embeddings):
1081
+ self.output = new_embeddings
1082
+
1083
+ def set_decoder(self, decoder):
1084
+ self.model = decoder
1085
+
1086
+ def get_decoder(self):
1087
+ return self.model
1088
+
1089
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1090
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1091
+ def forward(
1092
+ self,
1093
+ input_ids: torch.LongTensor = None,
1094
+ attention_mask: Optional[torch.Tensor] = None,
1095
+ position_ids: Optional[torch.LongTensor] = None,
1096
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1097
+ phantom_position: torch.BoolTensor = None,
1098
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1099
+ labels: Optional[torch.LongTensor] = None,
1100
+ use_cache: Optional[bool] = None,
1101
+ output_attentions: Optional[bool] = None,
1102
+ output_hidden_states: Optional[bool] = None,
1103
+ return_dict: Optional[bool] = None,
1104
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1105
+ r"""
1106
+ Args:
1107
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1108
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1109
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1110
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1111
+
1112
+ Returns:
1113
+
1114
+ Example:
1115
+
1116
+ ```python
1117
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1118
+
1119
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1120
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1121
+
1122
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1123
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1124
+
1125
+ >>> # Generate
1126
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1127
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1128
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1129
+ ```"""
1130
+
1131
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1132
+ output_hidden_states = (
1133
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1134
+ )
1135
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1136
+
1137
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1138
+ outputs = self.model(
1139
+ input_ids=input_ids,
1140
+ attention_mask=attention_mask,
1141
+ position_ids=position_ids,
1142
+ past_key_values=past_key_values,
1143
+ phantom_position=phantom_position,
1144
+ inputs_embeds=inputs_embeds,
1145
+ use_cache=use_cache,
1146
+ output_attentions=output_attentions,
1147
+ output_hidden_states=output_hidden_states,
1148
+ return_dict=return_dict,
1149
+ )
1150
+
1151
+ hidden_states = outputs[0]
1152
+ logits = self.output(hidden_states)
1153
+ logits = logits.float()
1154
+
1155
+ loss = None
1156
+ if labels is not None:
1157
+ # Shift so that tokens < n predict n
1158
+ shift_logits = logits[..., :-1, :].contiguous()
1159
+ shift_labels = labels[..., 1:].contiguous()
1160
+ # Flatten the tokens
1161
+ loss_fct = CrossEntropyLoss()
1162
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1163
+ shift_labels = shift_labels.view(-1)
1164
+ # Enable model parallelism
1165
+ shift_labels = shift_labels.to(shift_logits.device)
1166
+ loss = loss_fct(shift_logits, shift_labels)
1167
+
1168
+ if not return_dict:
1169
+ output = (logits,) + outputs[1:]
1170
+ return (loss,) + output if loss is not None else output
1171
+
1172
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1173
+ output = CausalLMOutputWithPast(
1174
+ loss=loss,
1175
+ logits=logits,
1176
+ past_key_values=outputs.past_key_values,
1177
+ hidden_states=outputs.hidden_states,
1178
+ attentions=outputs.attentions,
1179
+ )
1180
+ output['logits'] = output['logits'].to(device)
1181
+ return output
1182
+
1183
+ def prepare_inputs_for_generation(
1184
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1185
+ ):
1186
+ if past_key_values is not None:
1187
+ past_length = past_key_values[0][0].shape[2]
1188
+
1189
+ # Some generation methods already pass only the last input ID
1190
+ if input_ids.shape[1] > past_length:
1191
+ remove_prefix_length = past_length
1192
+ else:
1193
+ # Default to old behavior: keep only final ID
1194
+ remove_prefix_length = input_ids.shape[1] - 1
1195
+
1196
+ input_ids = input_ids[:, remove_prefix_length:]
1197
+
1198
+ position_ids = kwargs.get('position_ids', None)
1199
+ if attention_mask is not None and position_ids is None:
1200
+ # create position_ids on the fly for batch generation
1201
+ position_ids = attention_mask.long().cumsum(-1) - 1
1202
+ position_ids.masked_fill_(attention_mask == 0, 1)
1203
+ if past_key_values:
1204
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1205
+
1206
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1207
+ if inputs_embeds is not None and past_key_values is None:
1208
+ model_inputs = {'inputs_embeds': inputs_embeds}
1209
+ else:
1210
+ model_inputs = {'input_ids': input_ids}
1211
+
1212
+ model_inputs.update(
1213
+ {
1214
+ 'position_ids': position_ids,
1215
+ 'past_key_values': past_key_values,
1216
+ 'phantom_position': kwargs.get('phantom_position'),
1217
+ 'use_cache': kwargs.get('use_cache'),
1218
+ 'attention_mask': attention_mask,
1219
+ }
1220
+ )
1221
+ return model_inputs
1222
+
1223
+ @staticmethod
1224
+ def _reorder_cache(past_key_values, beam_idx):
1225
+ reordered_past = ()
1226
+ for layer_past in past_key_values:
1227
+ reordered_past += (
1228
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1229
+ )
1230
+ return reordered_past
1231
+
1232
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1233
+ if tokenizer.add_bos_token:
1234
+ prompt = ''
1235
+ else:
1236
+ prompt = tokenizer.bos_token
1237
+ if meta_instruction:
1238
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1239
+ for record in history:
1240
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1241
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1242
+ return tokenizer([prompt], return_tensors='pt')
1243
+
1244
+ @torch.no_grad()
1245
+ def chat(
1246
+ self,
1247
+ tokenizer,
1248
+ query: str,
1249
+ history: List[Tuple[str, str]] = [],
1250
+ streamer: Optional[BaseStreamer] = None,
1251
+ max_new_tokens: int = 1024,
1252
+ do_sample: bool = True,
1253
+ temperature: float = 0.8,
1254
+ top_p: float = 0.8,
1255
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1256
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1257
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1258
+ **kwargs,
1259
+ ):
1260
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1261
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1262
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1263
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1264
+ outputs = self.generate(
1265
+ **inputs,
1266
+ streamer=streamer,
1267
+ max_new_tokens=max_new_tokens,
1268
+ do_sample=do_sample,
1269
+ temperature=temperature,
1270
+ top_p=top_p,
1271
+ eos_token_id=eos_token_id,
1272
+ **kwargs,
1273
+ )
1274
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1275
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1276
+ response = response.split('<|im_end|>')[0]
1277
+ history = history + [(query, response)]
1278
+ return response, history
1279
+
1280
+ @torch.no_grad()
1281
+ def stream_chat(
1282
+ self,
1283
+ tokenizer,
1284
+ query: str,
1285
+ history: List[Tuple[str, str]] = [],
1286
+ max_new_tokens: int = 1024,
1287
+ do_sample: bool = True,
1288
+ temperature: float = 0.8,
1289
+ top_p: float = 0.8,
1290
+ **kwargs,
1291
+ ):
1292
+ """
1293
+ Return a generator in format: (response, history)
1294
+ Eg.
1295
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1296
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1297
+ """
1298
+ if BaseStreamer is None:
1299
+ raise ModuleNotFoundError(
1300
+ 'The version of `transformers` is too low. Please make sure '
1301
+ 'that you have installed `transformers>=4.28.0`.'
1302
+ )
1303
+
1304
+ response_queue = queue.Queue(maxsize=20)
1305
+
1306
+ class ChatStreamer(BaseStreamer):
1307
+ def __init__(self, tokenizer) -> None:
1308
+ super().__init__()
1309
+ self.tokenizer = tokenizer
1310
+ self.queue = response_queue
1311
+ self.query = query
1312
+ self.history = history
1313
+ self.response = ''
1314
+ self.cache = []
1315
+ self.received_inputs = False
1316
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1317
+
1318
+ def put(self, value):
1319
+ if len(value.shape) > 1 and value.shape[0] > 1:
1320
+ raise ValueError('ChatStreamer only supports batch size 1')
1321
+ elif len(value.shape) > 1:
1322
+ value = value[0]
1323
+
1324
+ if not self.received_inputs:
1325
+ # The first received value is input_ids, ignore here
1326
+ self.received_inputs = True
1327
+ return
1328
+
1329
+ self.cache.extend(value.tolist())
1330
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1331
+ if token.strip() != '<|im_end|>':
1332
+ self.response = self.response + token
1333
+ history = self.history + [(self.query, self.response)]
1334
+ self.queue.put((self.response, history))
1335
+ self.cache = []
1336
+ else:
1337
+ self.end()
1338
+
1339
+ def end(self):
1340
+ self.queue.put(None)
1341
+
1342
+ def stream_producer():
1343
+ return self.chat(
1344
+ tokenizer=tokenizer,
1345
+ query=query,
1346
+ streamer=ChatStreamer(tokenizer=tokenizer),
1347
+ history=history,
1348
+ max_new_tokens=max_new_tokens,
1349
+ do_sample=do_sample,
1350
+ temperature=temperature,
1351
+ top_p=top_p,
1352
+ **kwargs,
1353
+ )
1354
+
1355
+ def consumer():
1356
+ producer = threading.Thread(target=stream_producer)
1357
+ producer.start()
1358
+ while True:
1359
+ res = response_queue.get()
1360
+ if res is None:
1361
+ return
1362
+ yield res
1363
+
1364
+ return consumer()
1365
+
1366
+
1367
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1368
+ @add_start_docstrings(
1369
+ """
1370
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1371
+
1372
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1373
+ as other causal models (e.g. GPT-2) do.
1374
+
1375
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1376
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1377
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1378
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1379
+ each row of the batch).
1380
+ """,
1381
+ InternLM2_START_DOCSTRING,
1382
+ )
1383
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1384
+ def __init__(self, config):
1385
+ super().__init__(config)
1386
+ self.num_labels = config.num_labels
1387
+ self.model = InternLM2Model(config)
1388
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1389
+
1390
+ # Initialize weights and apply final processing
1391
+ self.post_init()
1392
+
1393
+ def get_input_embeddings(self):
1394
+ return self.model.tok_embeddings
1395
+
1396
+ def set_input_embeddings(self, value):
1397
+ self.model.tok_embeddings = value
1398
+
1399
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1400
+ def forward(
1401
+ self,
1402
+ input_ids: torch.LongTensor = None,
1403
+ attention_mask: Optional[torch.Tensor] = None,
1404
+ position_ids: Optional[torch.LongTensor] = None,
1405
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1406
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1407
+ labels: Optional[torch.LongTensor] = None,
1408
+ use_cache: Optional[bool] = None,
1409
+ output_attentions: Optional[bool] = None,
1410
+ output_hidden_states: Optional[bool] = None,
1411
+ return_dict: Optional[bool] = None,
1412
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1413
+ r"""
1414
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1415
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1416
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1417
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1418
+ """
1419
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1420
+
1421
+ transformer_outputs = self.model(
1422
+ input_ids,
1423
+ attention_mask=attention_mask,
1424
+ position_ids=position_ids,
1425
+ past_key_values=past_key_values,
1426
+ inputs_embeds=inputs_embeds,
1427
+ use_cache=use_cache,
1428
+ output_attentions=output_attentions,
1429
+ output_hidden_states=output_hidden_states,
1430
+ return_dict=return_dict,
1431
+ )
1432
+ hidden_states = transformer_outputs[0]
1433
+ logits = self.score(hidden_states)
1434
+
1435
+ if input_ids is not None:
1436
+ batch_size = input_ids.shape[0]
1437
+ else:
1438
+ batch_size = inputs_embeds.shape[0]
1439
+
1440
+ if self.config.pad_token_id is None and batch_size != 1:
1441
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1442
+ if self.config.pad_token_id is None:
1443
+ sequence_lengths = -1
1444
+ else:
1445
+ if input_ids is not None:
1446
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1447
+ logits.device
1448
+ )
1449
+ else:
1450
+ sequence_lengths = -1
1451
+
1452
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1453
+
1454
+ loss = None
1455
+ if labels is not None:
1456
+ labels = labels.to(logits.device)
1457
+ if self.config.problem_type is None:
1458
+ if self.num_labels == 1:
1459
+ self.config.problem_type = 'regression'
1460
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1461
+ self.config.problem_type = 'single_label_classification'
1462
+ else:
1463
+ self.config.problem_type = 'multi_label_classification'
1464
+
1465
+ if self.config.problem_type == 'regression':
1466
+ loss_fct = MSELoss()
1467
+ if self.num_labels == 1:
1468
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1469
+ else:
1470
+ loss = loss_fct(pooled_logits, labels)
1471
+ elif self.config.problem_type == 'single_label_classification':
1472
+ loss_fct = CrossEntropyLoss()
1473
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1474
+ elif self.config.problem_type == 'multi_label_classification':
1475
+ loss_fct = BCEWithLogitsLoss()
1476
+ loss = loss_fct(pooled_logits, labels)
1477
+ if not return_dict:
1478
+ output = (pooled_logits,) + transformer_outputs[1:]
1479
+ return ((loss,) + output) if loss is not None else output
1480
+
1481
+ return SequenceClassifierOutputWithPast(
1482
+ loss=loss,
1483
+ logits=pooled_logits,
1484
+ past_key_values=transformer_outputs.past_key_values,
1485
+ hidden_states=transformer_outputs.hidden_states,
1486
+ attentions=transformer_outputs.attentions,
1487
+ )
model/arch_7b/modeling_phantom.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch.utils.checkpoint
4
+ from torch import nn
5
+ from transformers import GenerationConfig
6
+ from transformers.modeling_outputs import CausalLMOutputWithPast
7
+ from transformers.modeling_utils import PreTrainedModel
8
+
9
+ from .configuration_phantom import PhantomConfig
10
+ from .modeling_intern_vit import InternVisionModel
11
+ from .modeling_internlm2 import InternLM2ForCausalLM
12
+
13
+ from utils.utils import *
14
+
15
+ class PhantomForCausalLM(PreTrainedModel):
16
+ config_class = PhantomConfig
17
+ main_input_name = 'pixel_values'
18
+ _supports_flash_attn_2 = True
19
+ _no_split_modules = ['InternVisionModel', 'InternLM2DecoderLayer']
20
+
21
+ def __init__(self, config: PhantomConfig):
22
+ super().__init__(config)
23
+ image_size = config.force_image_size or config.vision_config.image_size
24
+ patch_size = config.vision_config.patch_size
25
+ self.patch_size = patch_size
26
+ self.template = config.template
27
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
28
+ self.downsample_ratio = config.downsample_ratio
29
+
30
+ self.vision_model = InternVisionModel(config.vision_config)
31
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
32
+
33
+ vit_hidden_size = config.vision_config.hidden_size
34
+ llm_hidden_size = config.llm_config.hidden_size
35
+
36
+ self.vision_proj = nn.Sequential(
37
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
38
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
39
+ nn.GELU(),
40
+ nn.Linear(llm_hidden_size, llm_hidden_size)
41
+ )
42
+
43
+ # prompt rule
44
+ self.prompt_rule = {
45
+ "system_start": "<|im_start|>system\n",
46
+ "system_end": "<|im_end|>",
47
+ "user_start": "<|im_start|>user\n",
48
+ "user_end": "<|im_end|>",
49
+ "assistant_start": "<|im_start|>assistant\n",
50
+ "assistant_end": "<|im_end|>",
51
+ "test_start": "assistant\n",
52
+ "test_end": "<|im_end|>",
53
+ "split": "",
54
+ }
55
+
56
+ def eval_process(
57
+ self,
58
+ inputs,
59
+ tokenizer,
60
+ data,
61
+ device,
62
+ ):
63
+ batched_image=[]
64
+ batched_qa_prompt=[]
65
+ batched_phantom_position = []
66
+ for _input in inputs:
67
+
68
+ # making image prompt
69
+ if 'image' in _input.keys() and _input['image'] != None:
70
+ process_image = dynamic_preprocess(_input['image'].to(device))
71
+ dynamic_process_image = torch.stack([dynamic_transform(image) for image in process_image]).to(device)
72
+ img_token_number = dynamic_process_image.shape[0] * 256
73
+ batched_image.append(dynamic_process_image)
74
+
75
+ # make question and answer
76
+ question = _input['question']
77
+
78
+ # make instruction (qa pair) and label
79
+ qa_prompt = make_instruction(question, data, self.prompt_rule)
80
+
81
+ # adding image special tokens to question
82
+ if 'image' in _input.keys():
83
+ qa_prompt = qa_prompt.replace('<image>', '<img><IMG_CONTEXT></img>')
84
+
85
+ # add bundle image tokens if it has <image> token
86
+ qa_prompt = add_bundle_tokens(qa_prompt, '<IMG_CONTEXT>', img_token_number)
87
+
88
+ # phantom_position
89
+ label = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].to(device)
90
+ phantom_position = torch.zeros_like(label)
91
+ phantom_position[0] = 1
92
+
93
+ # batched processing
94
+ batched_qa_prompt.append(qa_prompt)
95
+ batched_phantom_position.append(phantom_position.flip(dims=[0]))
96
+
97
+ '''For Final Outputs'''
98
+ qa_prompts = tokenizer(batched_qa_prompt, padding='longest', return_tensors="pt", add_special_tokens=False)
99
+
100
+ # [1] input_ids
101
+ input_ids = qa_prompts.input_ids.to(device)
102
+
103
+ # [2] attention_mask
104
+ attention_mask = qa_prompts.attention_mask.to(device)
105
+
106
+ # [3] Phantom Position
107
+ batched_phantom_position = torch.nn.utils.rnn.pad_sequence(batched_phantom_position, batch_first=True, padding_value=0).flip(dims=[1]) # padding left
108
+
109
+ if len(batched_image):
110
+ return {"input_ids": input_ids,
111
+ "attention_mask": attention_mask,
112
+ "pixel_values": torch.cat(batched_image, dim=0).to(device),
113
+ "phantom_position": batched_phantom_position.bool()
114
+ }
115
+ else:
116
+ return {"input_ids": input_ids,
117
+ "attention_mask": attention_mask,
118
+ "phantom_position": batched_phantom_position.bool()
119
+ }
120
+
121
+ def extract_feature(self, pixel_values):
122
+ vit_embeds = self.vision_model(
123
+ pixel_values=pixel_values,
124
+ output_hidden_states=False,
125
+ return_dict=True).last_hidden_state
126
+ vit_embeds = vit_embeds[:, 1:, :]
127
+
128
+ h = w = int(vit_embeds.shape[1] ** 0.5)
129
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
130
+ vit_embeds = pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
131
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
132
+ vit_embeds = self.vision_proj(vit_embeds)
133
+ return vit_embeds
134
+
135
+ @torch.no_grad()
136
+ def generate(
137
+ self,
138
+ pixel_values: Optional[torch.FloatTensor] = None,
139
+ input_ids: Optional[torch.FloatTensor] = None,
140
+ attention_mask: Optional[torch.LongTensor] = None,
141
+ phantom_position: torch.BoolTensor = None,
142
+ generation_config: Optional[GenerationConfig] = None,
143
+ output_hidden_states: Optional[bool] = None,
144
+ return_dict: Optional[bool] = None,
145
+ **generate_kwargs,
146
+ ) -> torch.LongTensor:
147
+
148
+ if pixel_values is not None:
149
+ vit_embeds = self.extract_feature(pixel_values.to(torch.bfloat16))
150
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
151
+ B, N, C = input_embeds.shape
152
+ input_embeds = input_embeds.reshape(B * N, C)
153
+
154
+ input_ids = input_ids.reshape(B * N)
155
+ selected = (input_ids == self.config.image_token_index)
156
+ assert selected.sum() != 0
157
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
158
+
159
+ input_embeds = input_embeds.reshape(B, N, C)
160
+ else:
161
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
162
+
163
+ outputs = self.language_model.generate(
164
+ inputs_embeds=input_embeds,
165
+ attention_mask=attention_mask,
166
+ phantom_position=phantom_position,
167
+ generation_config=generation_config,
168
+ output_hidden_states=output_hidden_states,
169
+ return_dict=return_dict,
170
+ use_cache=True,
171
+ pad_token_id=self.config.eos_token_id,
172
+ eos_token_id=self.config.eos_token_id,
173
+ **generate_kwargs,
174
+ )
175
+
176
+ return outputs
model/arch_7b/tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
model/load_model.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import warnings
3
+ from utils.utils import *
4
+ from config import *
5
+ from transformers import AutoTokenizer
6
+ from transformers import BitsAndBytesConfig
7
+
8
+ warnings.filterwarnings(action='ignore')
9
+
10
+ def load_model(size):
11
+
12
+ """
13
+ model selection
14
+ """
15
+
16
+ # Phantom Bit
17
+ bit_quant_skip = ["linear_q", "linear_k", "linear_v", "linear_o", "gating_phantom_1", "gating_phantom_2"]
18
+ # Vision target modules
19
+ if size == '7b':
20
+ from .arch_7b.modeling_phantom import PhantomForCausalLM
21
+ from .arch_7b.tokenization_internlm2 import InternLM2Tokenizer as PhantomTokenizer
22
+ path = MODEL_7B
23
+ bit_quant_skip += ["mlp1", "wqkv", "output"]
24
+
25
+ # Loading tokenizer
26
+ tokenizer = PhantomTokenizer.from_pretrained(path, padding_side='left')
27
+
28
+ # bits
29
+ bits = 8
30
+
31
+ elif size == '3.8b':
32
+ from .arch_3_8b.modeling_phantom import PhantomForCausalLM
33
+ path = MODEL_3_8B
34
+ bit_quant_skip += ["mlp1", "qkv_proj", "phantom", "lm_head"]
35
+
36
+ # Loading tokenizer
37
+ tokenizer = AutoTokenizer.from_pretrained(path, padding_side='left')
38
+
39
+ # bits
40
+ bits = 8
41
+
42
+ elif size == '1.8b':
43
+ from .arch_1_8b.modeling_phantom import PhantomForCausalLM
44
+ from .arch_1_8b.tokenization_internlm2 import InternLM2Tokenizer as PhantomTokenizer
45
+ path = MODEL_1_8B
46
+ bit_quant_skip += ["mlp1", "wqkv", "phantom", "output"]
47
+
48
+ # Loading tokenizer
49
+ tokenizer = PhantomTokenizer.from_pretrained(path, padding_side='left')
50
+
51
+ # bits
52
+ bits = 8
53
+
54
+ elif size == '0.5b':
55
+ from .arch_0_5b.modeling_phantom import PhantomForCausalLM
56
+ path = MODEL_0_5B
57
+ bit_quant_skip += ["mlp1", "q_proj", "k_proj", "v_proj", "phantom", "lm_head"]
58
+
59
+ # Loading tokenizer
60
+ tokenizer = AutoTokenizer.from_pretrained(path, padding_side='left')
61
+
62
+ # bits
63
+ bits = 8
64
+ else:
65
+ raise Exception("Unsupported Size")
66
+
67
+
68
+ # huggingface model configuration
69
+ huggingface_config = {}
70
+
71
+ # Bit quantization
72
+ if bits in [4, 8]:
73
+ huggingface_config.update(dict(
74
+ torch_dtype=torch.bfloat16,
75
+ low_cpu_mem_usage=True,
76
+ attn_implementation="flash_attention_2",
77
+ quantization_config=BitsAndBytesConfig(
78
+ load_in_4bit=bits == 4,
79
+ load_in_8bit=bits == 8,
80
+ llm_int8_skip_modules=bit_quant_skip,
81
+ llm_int8_threshold=6.0,
82
+ llm_int8_has_fp16_weight=False,
83
+ bnb_4bit_compute_dtype=torch.bfloat16,
84
+ bnb_4bit_use_double_quant=True,
85
+ bnb_4bit_quant_type='nf4'
86
+ )
87
+ ))
88
+ else:
89
+ huggingface_config.update(dict(
90
+ torch_dtype=torch.bfloat16,
91
+ low_cpu_mem_usage=True,
92
+ attn_implementation="flash_attention_2",
93
+ ))
94
+
95
+ # Model Uploading
96
+ model = PhantomForCausalLM.from_pretrained(path, **huggingface_config)
97
+
98
+ # Parameter arrangement
99
+ freeze_model(model)
100
+ model.eval()
101
+
102
+ # bfloat16/float16 conversion
103
+ for param in model.parameters():
104
+ if 'float32' in str(param.dtype).lower() or 'float16' in str(param.dtype).lower():
105
+ param.data = param.data.to(torch.bfloat16)
106
+
107
+ return model, tokenizer
requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ transformers
2
+ bitsandbytes
3
+ accelerate
4
+ peft
5
+ pandas
6
+ pyarrow
7
+ jsonlines
8
+ wandb
9
+ einops
10
+ timm
11
+ einops_exts
12
+ sentencepiece
13
+ shortuuid
14
+ seaborn
15
+ matplotlib
16
+ scikit-learn
17
+ word2number
18
+ Rouge
19
+ gradio
20
+ spaces
utils/__init__.py ADDED
File without changes
utils/ddp_accel.yaml ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ debug: false
3
+ distributed_type: MULTI_GPU
4
+ downcast_bf16: 'no'
5
+ gpu_ids: all
6
+ machine_rank: 0
7
+ main_training_function: main
8
+ mixed_precision: 'no'
9
+ num_machines: 1
10
+ num_processes: 1
11
+ rdzv_backend: static
12
+ same_network: true
13
+ tpu_env: []
14
+ tpu_use_cluster: false
15
+ tpu_use_sudo: false
16
+ use_cpu: false
utils/ds_accel.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ compute_environment: LOCAL_MACHINE
2
+ debug: false
3
+ deepspeed_config:
4
+ gradient_accumulation_steps: 1
5
+ offload_optimizer_device: none
6
+ offload_param_device: none
7
+ zero3_init_flag: false
8
+ zero3_save_16bit_model: false
9
+ zero_stage: 3
10
+ distributed_type: DEEPSPEED
11
+ downcast_bf16: 'no'
12
+ enable_cpu_affinity: false
13
+ machine_rank: 0
14
+ main_training_function: main
15
+ mixed_precision: 'no'
16
+ num_machines: 1
17
+ num_processes: 1
18
+ rdzv_backend: static
19
+ same_network: true
20
+ tpu_env: []
21
+ tpu_use_cluster: false
22
+ tpu_use_sudo: false
23
+ use_cpu: false
utils/utils.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import math
3
+ import torch
4
+ from config import *
5
+ from PIL import Image
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ from torchvision.transforms.functional import to_pil_image
9
+ from torchvision.transforms.functional import pil_to_tensor
10
+
11
+ output_filtering = lambda x, model: x.split(model.prompt_rule["test_start"])[-1].split(model.prompt_rule["test_end"])[0].strip()
12
+ def memory_optimization():
13
+ # memory deallocation
14
+ gc.collect()
15
+
16
+ # removing cache
17
+ torch.cuda.empty_cache()
18
+
19
+ def freeze_model(model):
20
+ for param in model.parameters():
21
+ param.requires_grad=False
22
+
23
+ def find_special_token(string, special_token):
24
+ start = 0
25
+ while True:
26
+ start = string.find(special_token, start)
27
+ if start == -1: return
28
+ yield start
29
+ start += len(special_token) # use start += 1 to find overlapping matches
30
+
31
+ def add_bundle_tokens(input_string, special_token, num):
32
+
33
+ # number of special tokens in input_string
34
+ num_special_tokens = len(list(find_special_token(input_string, special_token)))
35
+
36
+ # No special token -> return the raw
37
+ if not num_special_tokens:
38
+ return input_string
39
+
40
+ result = ""
41
+ index = 0
42
+ while index < len(input_string):
43
+ if input_string[index:index + len(special_token)] == special_token:
44
+ result += special_token * num
45
+ index += len(special_token)
46
+ else:
47
+ result += input_string[index]
48
+ index += 1
49
+
50
+ assert len(list(find_special_token(result, special_token))) == num_special_tokens * num
51
+ return result
52
+
53
+ def make_instruction_and_label(question, answer, tokenizer, device, prompt_rule, config):
54
+
55
+ qa_prompt = make_human_string(prompt_rule["user_start"]+question+prompt_rule["user_end"],
56
+ prompt_rule["assistant_start"],
57
+ split=prompt_rule["split"])
58
+
59
+ # Only QA Prompt Length
60
+ length = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].shape[0]
61
+
62
+ # Concat QA Prompt + Answer Length + stop token
63
+ qa_prompt = qa_prompt + answer + prompt_rule["assistant_end"]
64
+
65
+ # label
66
+ label = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].to(device)
67
+
68
+ # phantom_position
69
+ phantom_position = torch.zeros_like(label)
70
+ phantom_position[0] = 1
71
+
72
+ # add ignore index to label
73
+ label[:length] = config.ignore_index
74
+
75
+ return qa_prompt, label, phantom_position
76
+
77
+ def make_instruction(question, dataset, prompt_rule):
78
+
79
+ if dataset != "mathverse" and dataset != "hallusionbench" and dataset == "demo":
80
+ question = "<image>" + question
81
+
82
+ if dataset in ["sqa", "mmbench", "mmbench_cn", "mmbench_dev", "mmbench_cn_dev", "seed", "seed-2-plus", "qbench", "ai2d", "mmstar", "cvbench", "blink"]:
83
+ question = question + "\nAnswer with the option's letter from the given choices directly."
84
+
85
+ elif dataset in ["pope", "chartqa"]:
86
+ question = question + "\nAnswer the question using a single word or phrase."
87
+
88
+ elif dataset in ["hallusionbench"]:
89
+ if "Please answer yes or no." not in question:
90
+ question = question + "\nPlease answer yes or no."
91
+
92
+ qa_prompt = make_human_string(prompt_rule["user_start"]+question+prompt_rule["user_end"],
93
+ prompt_rule["assistant_start"],
94
+ split=prompt_rule["split"])
95
+
96
+ return qa_prompt
97
+
98
+ def make_human_string(*args, split):
99
+ out = ''
100
+ for i, arg in enumerate(args):
101
+ out += arg
102
+ if i != len(args)-1:
103
+ out += split
104
+ return out
105
+
106
+ def get_max_new_tokens(data_name):
107
+ if data_name.lower() in ["mme", "pope", "sqa", "mmbench", "mmbench_cn", \
108
+ "mmbench_dev","mmbench_cn_dev", "seed", "seed-2-plus", \
109
+ "qbench", "ai2d", "mmstar", "chartqa", "hallusionbench", \
110
+ "cvbench", "blink"]:
111
+ return 5
112
+ elif data_name.lower() in ["llava", "llava_wilder", "mm-vet", "mm-vet-v2"]:
113
+ return 1024
114
+ elif data_name.lower() in ["mathvista", "mathverse", "visualwebbench"]:
115
+ return 512
116
+ else:
117
+ raise Exception("Check Data Name!")
118
+
119
+ class ScaledDotProductAttention(nn.Module):
120
+
121
+ def forward(self, query, key, value):
122
+ dk = query.size()[-1]
123
+ scores = query.matmul(key.transpose(-2, -1)) / math.sqrt(dk)
124
+ attention = F.softmax(scores, dim=-1)
125
+ return attention.matmul(value)
126
+
127
+ class XAttention(nn.Module):
128
+
129
+ def __init__(self,
130
+ in_features,
131
+ activation=F.gelu,
132
+ eta=1e-4):
133
+ """XAttention attention.
134
+ :param in_features: Size of each input sample.
135
+ :param activation: The activation after each linear transformation.
136
+ """
137
+ super(XAttention, self).__init__()
138
+ self.in_features = in_features
139
+ self.activation = activation
140
+ self.linear_q = nn.Linear(in_features, in_features, False)
141
+ self.linear_k = nn.Linear(in_features, in_features, False)
142
+ self.linear_v = nn.Linear(in_features, in_features, False)
143
+ self.linear_o = nn.Linear(in_features, in_features, False)
144
+ self.eta = eta
145
+
146
+ def forward(self, q, k, v, is_residual=False):
147
+ _q, _k, _v = self.linear_q(q), self.linear_k(k), self.linear_v(v)
148
+ if self.activation is not None:
149
+ _q = self.activation(_q)
150
+ _k = self.activation(_k)
151
+ _v = self.activation(_v)
152
+ y = ScaledDotProductAttention()(_q, _k, _v)
153
+ y = self.linear_o(y)
154
+ if self.activation is not None: y = self.activation(y)
155
+ return q + self.eta*y if is_residual else self.eta*y
156
+
157
+ def pixel_shuffle(x, scale_factor=0.5):
158
+ n, w, h, c = x.size()
159
+ # N, W, H, C --> N, W, H * scale, C // scale
160
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
161
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
162
+ x = x.permute(0, 2, 1, 3).contiguous()
163
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
164
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
165
+ int(c / (scale_factor * scale_factor)))
166
+ x = x.permute(0, 2, 1, 3).contiguous()
167
+ return x
168
+
169
+ import torchvision.transforms as T
170
+ from torchvision.transforms.functional import InterpolationMode
171
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
172
+ IMAGENET_STD = (0.229, 0.224, 0.225)
173
+ def build_transform(input_size):
174
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
175
+ transform = T.Compose([
176
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
177
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
178
+ T.ToTensor(),
179
+ T.Normalize(mean=MEAN, std=STD)
180
+ ])
181
+ return transform
182
+ dynamic_transform = build_transform(input_size=448)
183
+
184
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
185
+ best_ratio_diff = float('inf')
186
+ best_ratio = (1, 1)
187
+ area = width * height
188
+ for ratio in target_ratios:
189
+ target_aspect_ratio = ratio[0] / ratio[1]
190
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
191
+ if ratio_diff < best_ratio_diff:
192
+ best_ratio_diff = ratio_diff
193
+ best_ratio = ratio
194
+ elif ratio_diff == best_ratio_diff:
195
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
196
+ best_ratio = ratio
197
+ return best_ratio
198
+
199
+ def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=True):
200
+ image = to_pil_image(image)
201
+ orig_width, orig_height = image.size
202
+ aspect_ratio = orig_width / orig_height
203
+
204
+ # calculate the existing image aspect ratio
205
+ target_ratios = set(
206
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
207
+ i * j <= max_num and i * j >= min_num)
208
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
209
+
210
+ # find the closest aspect ratio to the target
211
+ target_aspect_ratio = find_closest_aspect_ratio(
212
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
213
+
214
+ # calculate the target width and height
215
+ target_width = image_size * target_aspect_ratio[0]
216
+ target_height = image_size * target_aspect_ratio[1]
217
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
218
+
219
+ # resize the image
220
+ resized_img = image.resize((target_width, target_height))
221
+ processed_images = []
222
+ for i in range(blocks):
223
+ box = (
224
+ (i % (target_width // image_size)) * image_size,
225
+ (i // (target_width // image_size)) * image_size,
226
+ ((i % (target_width // image_size)) + 1) * image_size,
227
+ ((i // (target_width // image_size)) + 1) * image_size
228
+ )
229
+ # split the image
230
+ split_img = resized_img.crop(box)
231
+ processed_images.append(split_img)
232
+ assert len(processed_images) == blocks
233
+ if use_thumbnail and len(processed_images) != 1:
234
+ thumbnail_img = image.resize((image_size, image_size))
235
+ processed_images.append(thumbnail_img)
236
+ return processed_images
237
+
238
+ def concat_images_horizontally_with_margin(image_tensors, margin=10):
239
+ images = [to_pil_image(xx) for xx in image_tensors]
240
+ max_height = max(image.height for image in images)
241
+ total_width = sum(image.width for image in images) + margin * (len(images) - 1)
242
+ # Create a new image with a black background
243
+ new_image = Image.new('RGB', (total_width, max_height), (0, 0, 0))
244
+
245
+ x_offset = 0
246
+ for image in images:
247
+ # Calculate padding to center the image vertically
248
+ y_offset = (max_height - image.height) // 2
249
+ new_image.paste(image, (x_offset, y_offset))
250
+ x_offset += image.width + margin # Add margin after each image except the last one
251
+ return pil_to_tensor(new_image)