import json import random import uuid import gradio as gr import spaces import torch from diffusers import DiffusionPipeline from transformers import AutoModelForCausalLM, AutoTokenizer device = torch.device("cuda:0") llm = AutoModelForCausalLM.from_pretrained("Azure99/blossom-v5-9b", torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained("Azure99/blossom-v5-9b") diffusion_pipe = DiffusionPipeline.from_pretrained( "playgroundai/playground-v2.5-1024px-aesthetic", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False, variant="fp16" ).to(device) def get_input_ids(inst, bot_prefix): return tokenizer.encode("A chat between a human and an artificial intelligence bot. " "The bot gives helpful, detailed, and polite answers to the human's questions.\n" f"|Human|: {inst}\n|Bot|: {bot_prefix}", add_special_tokens=True) def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name LLM_PROMPT = '''你的任务是从输入的[作画要求]中抽取画面描述(description),然后description翻译为英文(en_description),最后对en_description进行扩写(expanded_description),增加足够多的细节,且符合人类的第一直觉。 [输出]是一个json,包含description、en_description、expanded_description三个字符串字段,请直接输出一个完整的json,不要输出任何解释或其他无关内容。 下面是一些示例: [作画要求]->"画一幅画:落霞与孤鹜齐飞,秋水共长天一色。" [输出]->{"description": "落霞与孤鹜齐飞,秋水共长天一色", "en_description": "The setting sun and the solitary duck fly together, the autumn water shares a single hue with the vast sky", "expanded_description": "A lone duck gracefully gliding across the tranquil surface of a shimmering lake, bathed in the warm golden glow of the setting sun, creating a breathtaking scene of natural beauty and tranquility."} [作画要求]->"原神中的可莉" [输出]->{"description": "原神中的可莉", "en_description": "Klee in Genshin Impact", "expanded_description": "An artistic portrait of Klee from Genshin Impact, standing in a vibrant meadow with colorful explosions of her elemental abilities in the background."} [作画要求]->"create an image for me. a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone" [输出]->{"description": "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone", "en_description": "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone", "expanded_description": "A close-up portrait of an elegant woman with rich brown skin, wearing a stunning transparent, prismatic, and intricately detailed Nemes headdress, striking a confident and alluring over-the-shoulder pose."} [作画要求]->"一只高贵的柯基犬,素描画风格\n根据上面的描述生成一张图片吧!" [输出]->{"description": "一只高贵的柯基犬,素描画风格", "en_description": "A noble corgi dog, sketch style", "expanded_description": "A majestic corgi with a regal bearing, depicted in a detailed and intricate pencil sketch, capturing the essence of its noble lineage and dignified presence."} [作画要求]->$USER_PROMPT [输出]->''' BOT_PREFIX = '{"description": "' @spaces.GPU(enable_queue=True) def generate( prompt: str, progress=gr.Progress(track_tqdm=True), ): input_ids = get_input_ids(LLM_PROMPT.replace("$USER_PROMPT", json.dumps(prompt, ensure_ascii=False)), BOT_PREFIX) generation_kwargs = dict(input_ids=torch.tensor([input_ids]).to(llm.device), do_sample=True, max_new_tokens=512, temperature=0.5, top_p=0.85, top_k=50, repetition_penalty=1.05) llm_result = llm.generate(**generation_kwargs) llm_result = llm_result.cpu()[0][len(input_ids):] llm_result = BOT_PREFIX + tokenizer.decode(llm_result, skip_special_tokens=True) print("----------") print(prompt) print(llm_result) en_prompt = prompt expanded_prompt = prompt try: en_prompt = json.loads(llm_result)["en_description"] expanded_prompt = json.loads(llm_result)["expanded_description"] except: print("error, fallback to original prompt") pass seed = random.randint(0, 2147483647) generator = torch.Generator().manual_seed(seed) images = diffusion_pipe( prompt=[expanded_prompt, en_prompt], negative_prompt=None, width=1024, height=1024, guidance_scale=3, num_inference_steps=25, generator=generator, num_images_per_prompt=1, use_resolution_binning=True, output_type="pil", ).images image_paths = [save_image(img) for img in images] return image_paths css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} ''' with gr.Blocks(css=css) as demo: gr.Markdown("# Blossom & Playground v2.5") with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=2, rows=1, show_label=False) gr.on( triggers=[ prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, ], outputs=[result], api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()