from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_INPUT_LIMIT = 3584 MODEL_NAME = "Azure99/blossom-v5.1-9b" model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) GENERATE_CONFIG = dict( max_new_tokens=1536, temperature=0.5, top_p=0.85, top_k=50, repetition_penalty=1.05 ) def get_input_ids(inst, history): prefix = ("A chat between a human and an artificial intelligence bot. " "The bot gives helpful, detailed, and polite answers to the human's questions.") patterns = [] for conv in history: patterns.append(f'\n|Human|: {conv[0]}\n|Bot|: ') patterns.append(f'{conv[1]}') patterns.append(f'\n|Human|: {inst}\n|Bot|: ') patterns[0] = prefix + patterns[0] input_ids = [] for i, pattern in enumerate(patterns): input_ids += tokenizer.encode(pattern, add_special_tokens=(i == 0)) if i % 2 == 1: input_ids += [tokenizer.eos_token_id] return input_ids @spaces.GPU def chat(inst, history): with torch.no_grad(): streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) input_ids = get_input_ids(inst, history) if len(input_ids) > MAX_INPUT_LIMIT: yield "The input is too long, please clear the history." return generation_kwargs = dict(input_ids=torch.tensor([input_ids]).to(model.device), do_sample=True, streamer=streamer, **GENERATE_CONFIG) Thread(target=model.generate, kwargs=generation_kwargs).start() outputs = "" for new_text in streamer: outputs += new_text yield outputs gr.ChatInterface(chat, chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True), textbox=gr.Textbox(placeholder="", container=False, scale=7), title="Blossom 9B Demo", description='Hello, I am Blossom, an open source conversational large language model.🌠' 'GitHub', theme="soft", examples=["Hello", "What is MBTI", "用Python实现二分查找", "为switch写一篇小红书种草文案,带上emoji"], clear_btn="🗑️Clear", undo_btn="↩️Undo", retry_btn="🔄Retry", submit_btn="➡️Submit", ).queue().launch()