import os import tempfile from typing import List, Callable import gradio as gr import pandas as pd from autorag.data.parse import langchain_parse from autorag.data.parse.base import _add_last_modified_datetime from autorag.data.parse.llamaparse import llama_parse from autorag.data.qa.schema import Raw from autorag.utils import result_to_dataframe from llama_index.llms.openai import OpenAI from src.create import default_create, fast_create, advanced_create from src.util import on_submit_openai_key, on_submit_llama_cloud_key, on_submit_upstage_key @result_to_dataframe(["texts", "path", "page", "last_modified_datetime"]) def original_parse(fn: Callable, **kwargs): result = fn(**kwargs) result = _add_last_modified_datetime(result) return result def change_lang_choice(lang: str) -> str: lang_dict = { "English": "en", "한국어": "ko", "日本語": "ja" } return lang_dict[lang] def change_visible_status_api_key(parse_method: str): if parse_method == "llama-parse": return gr.update(visible=True), gr.update(visible=False) elif parse_method == "upstage🇰🇷": return gr.update(visible=False), gr.update(visible=True) else: return gr.update(visible=False), gr.update(visible=False) def run_parse(file_lists: List[str], parse_method: str, original_raw_df, progress=gr.Progress()): # save an input file to a directory progress(0.05) langchain_parse_original = langchain_parse.__wrapped__ if parse_method in ["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf"]: raw_df: pd.DataFrame = original_parse(langchain_parse_original, data_path_list=file_lists, parse_method=parse_method) elif parse_method == "llama-parse": llama_cloud_api_key = os.getenv("LLAMA_CLOUD_API_KEY") if llama_cloud_api_key is None: return "Please submit your Llama Cloud API key first.", original_raw_df raw_df: pd.DataFrame = original_parse(llama_parse.__wrapped__, data_path_list=file_lists) elif parse_method == "upstage🇰🇷": upstage_api_key = os.getenv("UPSTAGE_API_KEY") if upstage_api_key is None: return "Please submit your Upstage API key first.", original_raw_df raw_df: pd.DataFrame = original_parse(langchain_parse_original, data_path_list=file_lists, parse_method="upstagedocumentparse") else: return "Unsupported parse method.", original_raw_df progress(0.8) return "Parsing Complete. Download at the bottom button.", raw_df def run_chunk(use_existed_raw: bool, raw_df: pd.DataFrame, raw_file: str, chunk_method: str, chunk_size: int, chunk_overlap: int, lang: str = "English", original_corpus_df = None, progress=gr.Progress()): lang = change_lang_choice(lang) if not use_existed_raw: raw_df = pd.read_parquet(raw_file, engine="pyarrow") raw_instance = Raw(raw_df) if chunk_method in ["Token", "Sentence"]: corpus = raw_instance.chunk("llama_index_chunk", chunk_method=chunk_method, chunk_size=chunk_size, chunk_overlap=chunk_overlap, add_file_name=lang) elif chunk_method in ["Semantic"]: corpus = raw_instance.chunk("llama_index_chunk", chunk_method="Semantic_llama_index", embed_model="openai", breakpoint_percnetile_threshold=0.95, add_file_name=lang) elif chunk_method == "Recursive": corpus = raw_instance.chunk("langchain_chunk", chunk_method="recursivecharacter", add_file_name=lang, chunk_size=chunk_size, chunk_overlap=chunk_overlap) else: gr.Error("Unsupported chunk method.") return "Unsupported chunk method.", original_corpus_df progress(0.8) return "Chunking Complete. Download at the bottom button.", corpus.data def run_qa(use_existed_corpus: bool, corpus_df: pd.DataFrame, corpus_file: str, qa_method: str, model_name: str, qa_cnt: int, batch_size: int, lang: str = "English", original_qa_df = None, progress=gr.Progress()): lang = change_lang_choice(lang) if not use_existed_corpus: corpus_df = pd.read_parquet(corpus_file, engine="pyarrow") if os.getenv("OPENAI_API_KEY") is None: gr.Error("Please submit your OpenAI API key first.") return "Please submit your OpenAI API key first.", original_qa_df if model_name is None: gr.Error("Please select a model first.") return "Please select a model first.", original_qa_df llm = OpenAI(model=model_name) if qa_method == "default": qa = default_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size) elif qa_method == "fast": qa = fast_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size) elif qa_method == "advanced": qa = advanced_create(corpus_df, llm=llm, n=qa_cnt, lang=lang, progress=progress, batch_size=batch_size) else: gr.Error("Unsupported QA method.") return "Unsupported QA method.", original_qa_df return "QA Creation Complete. Download at the bottom button.", qa.data def download_state(state: pd.DataFrame, change_name: str): if state is None: gr.Error("No data to download.") return "" with tempfile.TemporaryDirectory() as temp_dir: filename = os.path.join(temp_dir, f"{change_name}.parquet") state.to_parquet(filename, engine="pyarrow") yield filename with gr.Blocks(theme="earneleh/paris") as demo: raw_df_state = gr.State() corpus_df_state = gr.State() qa_df_state = gr.State() gr.HTML("

AutoRAG Data Creation 🛠️

") with gr.Row(): openai_key_textbox = gr.Textbox(label="Please input your OpenAI API key and press Enter.", type="password", info="You can get your API key from https://platform.openai.com/account/api-keys\n\n" "AutoRAG do not store your API key.", autofocus=True) api_key_status_box = gr.Textbox(label="OpenAI API status", value="Not Set", interactive=False) lang_choice = gr.Radio(["English", "한국어", "日本語"], label="Language", value="English", info="Choose Langauge. En, Ko, Ja are supported.", interactive=True) with gr.Row(visible=False) as llama_cloud_api_key_row: llama_key_textbox = gr.Textbox(label="Please input your Llama Cloud API key and press Enter.", type="password", info="You can get your API key from https://docs.cloud.llamaindex.ai/llamacloud/getting_started/api_key\n\n" "AutoRAG do not store your API key.",) llama_key_status_box = gr.Textbox(label="Llama Cloud API status", value="Not Set", interactive=False) with gr.Row(visible=False) as upstage_api_key_row: upstage_key_textbox = gr.Textbox(label="Please input your Upstage API key and press Enter.", type="password", info="You can get your API key from https://upstage.ai/\n\n" "AutoRAG do not store your API key.",) upstage_key_status_box = gr.Textbox(label="Upstage API status", value="Not Set", interactive=False) with gr.Row(): with gr.Column(scale=1): gr.Markdown("## 1. Parse your PDF files\n\nUpload your pdf files and make it to raw.parquet.") document_file_input = gr.File(label="Upload Files", type="filepath", file_count="multiple") parse_choice = gr.Dropdown( ["pdfminer", "pdfplumber", "pypdfium2", "pypdf", "pymupdf", "llama-parse", "upstage🇰🇷"], label="Parsing Method", info="Choose parsing method that you want") parse_button = gr.Button(value="Run Parsing") parse_status = gr.Textbox(value="Not Started", interactive=False) raw_download_button = gr.DownloadButton(value=download_state, inputs=[raw_df_state, gr.State("raw")], label="Download raw.parquet") with gr.Column(scale=1): gr.Markdown( "## 2. Chunk your raw.parquet\n\nUse parsed raw.parquet or upload your own. It will make a corpus.parquet." ) raw_file_input = gr.File(label="Upload raw.parquet", type="filepath", file_count="single", visible=False) use_previous_raw_file = gr.Checkbox(label="Use previous raw.parquet", value=True) chunk_choice = gr.Dropdown( ["Token", "Sentence", "Semantic", "Recursive"], label="Chunking Method", info="Choose chunking method that you want") chunk_size = gr.Slider(minimum=128, maximum=1024, step=128, label="Chunk Size", value=256) chunk_overlap = gr.Slider(minimum=16, maximum=256, step=16, label="Chunk Overlap", value=32) chunk_button = gr.Button(value="Run Chunking") chunk_status = gr.Textbox(value="Not Started", interactive=False) corpus_download_button = gr.DownloadButton(label="Download corpus.parquet", value=download_state, inputs=[corpus_df_state, gr.State("corpus")]) with gr.Column(scale=1): gr.Markdown( "## 3. Create QA dataset from your corpus.parquet\n\nQA dataset is essential to run AutoRAG. Upload corpus.parquet & select QA method and run.") gr.HTML("Warning: QA Creation uses an OpenAI model, which can be costly. Start with a small batch to gauge expenses.") corpus_file_input = gr.File(label="Upload corpus.parquet", type="filepath", file_count="single", visible=False) use_previous_corpus_file = gr.Checkbox(label="Use previous corpus.parquet", value=True) qa_choice = gr.Radio(["default", "fast", "advanced"], label="QA Method", info="Choose QA method that you want") model_choice = gr.Radio(["gpt-4o-mini", "gpt-4o"], label="Select model for data creation", ) qa_cnt = gr.Slider(minimum=20, maximum=150, step=5, label="Number of QA pairs", value=80) batch_size = gr.Slider(minimum=1, maximum=16, step=1, label="Batch Size to OpenAI model. If there is an error, decrease this.", value=16) run_qa_button = gr.Button(value="Run QA Creation") qa_status = gr.Textbox(value="Not Started", interactive=False) qa_download_button = gr.DownloadButton(label="Download qa.parquet", value=download_state, inputs=[qa_df_state, gr.State("qa")]) #================================================================================================# # Logics use_previous_raw_file.change(lambda x: gr.update(visible=not x), inputs=[use_previous_raw_file], outputs=[raw_file_input]) use_previous_corpus_file.change(lambda x: gr.update(visible=not x), inputs=[use_previous_corpus_file], outputs=[corpus_file_input]) openai_key_textbox.submit(on_submit_openai_key, inputs=[openai_key_textbox], outputs=api_key_status_box) # Parsing parse_button.click(run_parse, inputs=[document_file_input, parse_choice, raw_df_state], outputs=[parse_status, raw_df_state]) # Chunking chunk_button.click(run_chunk, inputs=[use_previous_raw_file, raw_df_state, raw_file_input, chunk_choice, chunk_size, chunk_overlap, lang_choice, corpus_df_state], outputs=[chunk_status, corpus_df_state]) # QA Creation run_qa_button.click(run_qa, inputs=[use_previous_corpus_file, corpus_df_state, corpus_file_input, qa_choice, model_choice, qa_cnt, batch_size, lang_choice, qa_df_state], outputs=[qa_status, qa_df_state]) # API Key visibility parse_choice.change(change_visible_status_api_key, inputs=[parse_choice], outputs=[llama_cloud_api_key_row, upstage_api_key_row]) llama_key_textbox.submit(on_submit_llama_cloud_key, inputs=[llama_key_textbox], outputs=llama_key_status_box) upstage_key_textbox.submit(on_submit_upstage_key, inputs=[upstage_key_textbox], outputs=upstage_key_status_box) # if __name__ == "__main__": # demo.launch(share=False, debug=True) demo.launch(share=False, debug=False)