import os import subprocess # Clone the yolov5 repository and install its requirements if not os.path.exists('yolov5'): subprocess.run(['git', 'clone', 'https://github.com/ultralytics/yolov5'], check=True) subprocess.run(['pip', 'install', '-r', 'yolov5/requirements.txt'], check=True) import torch import torchvision from torchvision.transforms import functional as F from PIL import Image import cv2 import gradio as gr import numpy as np from yolov5.models.yolo import Model from yolov5.utils.general import non_max_suppression device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Using device: {device}") model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device) model.eval() print("Model loaded successfully") def preprocess_image(image): try: image = Image.fromarray(image) # Convert numpy array to PIL Image image_tensor = F.to_tensor(image).unsqueeze(0).to(device) print(f"Preprocessed image tensor: {image_tensor.shape}") return image_tensor except Exception as e: print(f"Error in preprocessing image: {e}") return None def draw_boxes(image, outputs, threshold=0.3): try: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) h, w, _ = image.shape for box in outputs: if box is not None: x1, y1, x2, y2, score, label = box[:6] if score > threshold: x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2) text = f"{model.names[int(label)]:s}: {score:.2f}" cv2.putText(image, text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) except Exception as e: print(f"Error in drawing boxes: {e}") return image def detect_objects(image): image_tensor = preprocess_image(image) if image_tensor is None: return image try: outputs = model(image_tensor)[0] # Get the first element of the output print(f"Model raw outputs: {outputs}") outputs = non_max_suppression(outputs, conf_thres=0.25, iou_thres=0.45)[0] # Apply NMS if outputs is None or len(outputs) == 0: print("No objects detected.") return image print(f"Filtered outputs: {outputs}") result_image = draw_boxes(image, outputs.cpu().numpy()) return result_image except Exception as e: print(f"Error in detecting objects: {e}") return image iface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="numpy"), outputs=gr.Image(type="numpy"), title="YOLOv5 Object Detection", description="Upload an image to detect objects using the YOLOv5 model." ) if __name__ == "__main__": iface.launch()