import gradio as gr import torch import cv2 import numpy as np from PIL import Image from torchvision.transforms import functional as F from yolov5.utils.general import non_max_suppression from yolov5.models.yolo import Model # Load YOLOv5 model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device) model.eval() def preprocess_image(image): image = Image.fromarray(image) image_tensor = F.to_tensor(image).unsqueeze(0).to(device) return image_tensor def draw_boxes(image, outputs, threshold=0.3): image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) h, w, _ = image.shape for box in outputs: score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item() if score > threshold: x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2) text = f"{model.names[label]}: {score:.2f}" cv2.putText(image, text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) def detect_objects(image): image_tensor = preprocess_image(image) outputs = model(image_tensor) outputs = non_max_suppression(outputs)[0] result_image = draw_boxes(image, outputs.cpu().numpy()) return result_image iface = gr.Interface( fn=detect_objects, inputs=gr.Image(type="numpy"), outputs=gr.Image(type="numpy"), title="YOLOv5 Object Detection", description="Upload an image to detect objects using the YOLOv5 model." ) if __name__ == "__main__": iface.launch(server_name="0.0.0.0", server_port=7860)