Aumkeshchy2003's picture
Update app.py
9af1953 verified
raw
history blame
1.85 kB
import os
import subprocess
# Clone the yolov5 repository and install its requirements
if not os.path.exists('yolov5'):
subprocess.run(['git', 'clone', 'https://github.com/ultralytics/yolov5'], check=True)
subprocess.run(['pip', 'install', '-r', 'yolov5/requirements.txt'], check=True)
import torch
import torchvision
from torchvision.transforms import functional as F
from PIL import Image
import cv2
import gradio as gr
from yolov5.models.yolo import Model
from yolov5.utils.general import non_max_suppression
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
model.eval()
def preprocess_image(image):
image_tensor = F.to_tensor(image)
return image_tensor.unsqueeze(0).to(device)
def draw_boxes(image, outputs, threshold=0.3):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = image.shape
for box in outputs:
score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item()
if score > threshold:
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2)
text = f"{model.names[label]:s}: {score:.2f}"
cv2.putText(image, text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
def detect_objects(image):
image_tensor = preprocess_image(image)
outputs = model(image_tensor)
outputs = non_max_suppression(outputs)[0]
result_image = draw_boxes(image, outputs)
return result_image
iface = gr.Interface(
fn=detect_objects,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil"),
live=True
)
iface.launch()