Spaces:
Running
Running
import os | |
import subprocess | |
# Clone the yolov5 repository and install its requirements | |
if not os.path.exists('yolov5'): | |
subprocess.run(['git', 'clone', 'https://github.com/ultralytics/yolov5'], check=True) | |
subprocess.run(['pip', 'install', '-r', 'yolov5/requirements.txt'], check=True) | |
import torch | |
import torchvision | |
from torchvision.transforms import functional as F | |
from PIL import Image | |
import cv2 | |
import gradio as gr | |
from yolov5.models.yolo import Model | |
from yolov5.utils.general import non_max_suppression | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device) | |
model.eval() | |
def preprocess_image(image): | |
image_tensor = F.to_tensor(image) | |
return image_tensor.unsqueeze(0).to(device) | |
def draw_boxes(image, outputs, threshold=0.3): | |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
h, w, _ = image.shape | |
for box in outputs: | |
score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item() | |
if score > threshold: | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2) | |
text = f"{model.names[label]:s}: {score:.2f}" | |
cv2.putText(image, text, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
def detect_objects(image): | |
image_tensor = preprocess_image(image) | |
outputs = model(image_tensor) | |
outputs = non_max_suppression(outputs)[0] | |
result_image = draw_boxes(image, outputs) | |
return result_image | |
iface = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Image(type="pil"), | |
live=True | |
) | |
iface.launch() |