Spaces:
Paused
Paused
File size: 8,164 Bytes
81e13bb f8afc9b 81e13bb f8afc9b 81e13bb f8afc9b 81e13bb f8afc9b 81e13bb f8afc9b 81e13bb f8afc9b 81e13bb f8afc9b 81e13bb f8afc9b 81e13bb a8ec4b1 81e13bb a8ec4b1 81e13bb a8ec4b1 81e13bb a8ec4b1 81e13bb a8ec4b1 81e13bb f8afc9b 81e13bb f8afc9b 81e13bb f8afc9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import Dict
import os
import shutil
import logging
import torch
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from dotenv import load_dotenv
import os
from utils import doc_processing
# Load .env file
load_dotenv()
# Access variables
dummy_key = os.getenv("dummy_key")
HUGGINGFACE_AUTH_TOKEN = dummy_key
# Hugging Face model and token
aadhar_model = "AuditEdge/doc_ocr_a" # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the processor (tokenizer + image processor)
processor_aadhar = LayoutLMv3Processor.from_pretrained(
aadhar_model,
use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
aadhar_model,
use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
aadhar_model = aadhar_model.to(device)
# pan model
pan_model = "AuditEdge/doc_ocr_p" # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the processor (tokenizer + image processor)
processor_pan = LayoutLMv3Processor.from_pretrained(
pan_model,
use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = LayoutLMv3ForTokenClassification.from_pretrained(
pan_model,
use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
pan_model = pan_model.to(device)
#
# gst model
gst_model = "AuditEdge/doc_ocr_new_g" # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the processor (tokenizer + image processor)
processor_gst = LayoutLMv3Processor.from_pretrained(
gst_model,
use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = LayoutLMv3ForTokenClassification.from_pretrained(
gst_model,
use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
gst_model = gst_model.to(device)
#cheque model
cheque_model = "AuditEdge/doc_ocr_new_c" # Replace with your fine-tuned model if applicable
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the processor (tokenizer + image processor)
processor_cheque = LayoutLMv3Processor.from_pretrained(
cheque_model,
use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = LayoutLMv3ForTokenClassification.from_pretrained(
cheque_model,
use_auth_token=HUGGINGFACE_AUTH_TOKEN
)
cheque_model = cheque_model.to(device)
# Verify model and processor are loaded
print("Model and processor loaded successfully!")
print(f"Model is on device: {next(aadhar_model.parameters()).device}")
# Import inference modules
from layoutlmv3FineTuning.Layoutlm_inference.ocr import prepare_batch_for_inference
from layoutlmv3FineTuning.Layoutlm_inference.inference_handler import handle
# Create FastAPI instance
app = FastAPI(debug=True)
# Enable CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Configure directories
UPLOAD_FOLDER = './uploads/'
processing_folder = "./processed_images"
os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure the main upload folder exists
os.makedirs(processing_folder,exist_ok=True)
UPLOAD_DIRS = {
"aadhar_file": "uploads/aadhar/",
"pan_file": "uploads/pan/",
"cheque_file": "uploads/cheque/",
"gst_file": "uploads/gst/",
}
process_dirs = {
"aadhar_file": "processed_images/aadhar/",
"pan_file": "processed_images/pan/",
"cheque_file": "processed_images/cheque/",
"gst_file": "processed_images/gst/",
}
# Ensure individual directories exist
for dir_path in UPLOAD_DIRS.values():
os.makedirs(dir_path, exist_ok=True)
for dir_path in process_dirs.values():
os.makedirs(dir_path, exist_ok=True)
# Logger configuration
logging.basicConfig(level=logging.INFO)
# Perform Inference
def perform_inference(file_paths: Dict[str, str]):
# Dictionary to map document types to their respective model directories
model_dirs = {
"aadhar_file": aadhar_model,
"pan_file": pan_model,
"cheque_file": cheque_model,
"gst_file": gst_model,
}
# Dictionary to store results for each document type
inference_results = {}
# Loop through the file paths and perform inference
for doc_type, file_path in file_paths.items():
if doc_type in model_dirs:
print(f"Processing {doc_type} using model at {model_dirs[doc_type]}")
# Prepare batch for inference
images_path = [file_path]
inference_batch = prepare_batch_for_inference(images_path)
# Prepare context for the specific document type
# context = {"model_dir": model_dirs[doc_type]}
# context = aadhar_model
if doc_type == "aadhar_file":
context = aadhar_model
processor = processor_aadhar
name = "aadhar"
attachemnt_num = 3
if doc_type == "pan_file":
context = pan_model
processor = processor_pan
name = "pan"
attachemnt_num = 2
if doc_type == "gst_file":
context = gst_model
processor = processor_gst
name = "gst"
attachemnt_num = 4
if doc_type == "cheque_file":
context = cheque_model
processor = processor_cheque
name = "cheque"
attachemnt_num = 8
# Perform inference (replace `handle` with your actual function)
result = handle(inference_batch, context,processor,name)
# Store the result
inference_results["attachment_{}".format(attachemnt_num)] = result
else:
print(f"Model directory not found for {doc_type}. Skipping.")
return inference_results
# Routes
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.post("/api/aadhar_ocr")
async def aadhar_ocr(
aadhar_file: UploadFile = File(None),
pan_file: UploadFile = File(None),
cheque_file: UploadFile = File(None),
gst_file: UploadFile = File(None),
):
try:
# Handle file uploads
file_paths = {}
for file_type, folder in UPLOAD_DIRS.items():
file = locals()[file_type] # Dynamically access the file arguments
if file:
# Save the file in the respective directory
file_path = os.path.join(folder, file.filename)
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
file_paths[file_type] = file_path
# Log received files
logging.info(f"Received files: {list(file_paths.keys())}")
print("file_paths",file_paths)
files = {}
for key, value in file_paths.items():
name = value.split("/")[-1].split(".")[0]
id_type = key.split("_")[0]
doc_type = value.split("/")[-1].split(".")[1]
f_path = value
preprocessing = doc_processing(name,id_type,doc_type,f_path)
response = preprocessing.process()
files[key] = response["output_p"]
print("response",response)
# Perform inference
result = perform_inference(files)
return {"status": "success", "result": result}
except Exception as e:
logging.error(f"Error processing files: {e}")
# raise HTTPException(status_code=500, detail="Internal Server Error")
return {"status":400}
|