Atualli commited on
Commit
a03571e
·
1 Parent(s): b5b3bfe

adiciona novo script

Browse files
Files changed (3) hide show
  1. app1.py +85 -0
  2. checkYoloxv7.sh +16 -0
  3. telegramCrise.sh +1 -0
app1.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import json
4
+ import yolov7
5
+
6
+
7
+ # Images
8
+ #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
9
+ #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
10
+
11
+ model_path = "kadirnar/yolov7-tiny-v0.1" #"kadirnar/yolov7-v0.1" #
12
+ image_size = 640
13
+ conf_threshold = 0.25
14
+ iou_threshold = 0.45
15
+
16
+ def yolov7_inference(
17
+ image: gr.inputs.Image = None,
18
+ #model_path: gr.inputs.Dropdown = None,
19
+ #image_size: gr.inputs.Slider = 640,
20
+ #conf_threshold: gr.inputs.Slider = 0.25,
21
+ #iou_threshold: gr.inputs.Slider = 0.45,
22
+ ):
23
+ """
24
+ YOLOv7 inference function
25
+ Args:
26
+ image: Input image
27
+ model_path: Path to the model
28
+ image_size: Image size
29
+ conf_threshold: Confidence threshold
30
+ iou_threshold: IOU threshold
31
+ Returns:
32
+ Rendered image
33
+ """
34
+
35
+ model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
36
+ model.conf = conf_threshold
37
+ model.iou = iou_threshold
38
+ results = model([image], size=image_size)
39
+ tensor = {
40
+ "tensorflow": [
41
+ ]
42
+ }
43
+
44
+ if results.pred is not None:
45
+ for i, element in enumerate(results.pred[0]):
46
+ object = {}
47
+ #print (element[0])
48
+ itemclass = round(element[5].item())
49
+ object["classe"] = itemclass
50
+ object["nome"] = results.names[itemclass]
51
+ object["score"] = element[4].item()
52
+ object["x"] = element[0].item()
53
+ object["y"] = element[1].item()
54
+ object["w"] = element[2].item()
55
+ object["h"] = element[3].item()
56
+ tensor["tensorflow"].append(object)
57
+
58
+
59
+
60
+ text = json.dumps(tensor)
61
+ #print (text)
62
+ return text #results.render()[0]
63
+
64
+
65
+ inputs = [
66
+ gr.inputs.Image(type="pil", label="Input Image"),
67
+ ]
68
+
69
+ #outputs = gr.outputs.Image(type="filepath", label="Output Image")
70
+ title = "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors"
71
+
72
+ examples = [['small-vehicles1.jpeg'], ['zidane.jpg']]
73
+ demo_app = gr.Interface(
74
+ fn=yolov7_inference,
75
+ inputs=inputs,
76
+ outputs=["text"],
77
+ title=title,
78
+ examples=examples,
79
+ #cache_examples=True,
80
+ #theme='huggingface',
81
+ )
82
+ demo_app.launch(debug=False, server_name="192.168.0.153", server_port=8081, enable_queue=True)
83
+ #demo_app.launch(debug=True, server_port=8083, enable_queue=True)
84
+ #demo_app.launch(debug=True, enable_queue=True)
85
+
checkYoloxv7.sh ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/sh
2
+ export path=/home/atualli/.local/lib/python3.8/site-packages:$PATH
3
+ cd ~/Projetos/huggingface/yolov7
4
+ SERVER=192.168.0.153
5
+ PORT=8081
6
+
7
+ if lsof -Pi :$PORT -sTCP:LISTEN -t >/dev/null ; then
8
+ echo "running"
9
+ else
10
+ ./telegramCrise.sh "reiniciando_yolox_V7_linux_192.168.0.153:8081"
11
+ pkill -f app1.py
12
+ python app1.py &
13
+ echo "not running"
14
+ fi
15
+
16
+
telegramCrise.sh ADDED
@@ -0,0 +1 @@
 
 
1
+ curl -X POST "https://api.telegram.org/bot766543741:AAE0oO_ni_QYkfS8tZxC-VZt0RJztFiZNHc/sendMessage?chat_id=-927074982&text=$1"