import gradio as gr import torch from yolov6 import YOLOV6 # Images torch.hub.download_url_to_file('https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg', 'highway.jpg') torch.hub.download_url_to_file('https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg', 'highway1.jpg') def yolov6_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv6 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = YOLOV6(model_path, device="cpu", hf_model=True) model.conf_thres = conf_threshold model.iou_thresh = iou_threshold model.save_img = True model.font_path = "Arial.ttf" pred = model.predict(source=image, img_size=image_size, yaml="coco.yaml") return pred inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown( label="Model", choices=[ "kadirnar/yolov6n-v3.0", "kadirnar/yolov6s-v3.0", "kadirnar/yolov6m-v3.0", "kadirnar/yolov6l-v3.0", "kadirnar/yolov6s6-v3.0", "kadirnar/yolov6m6-v3.0", "kadirnar/yolov6l6-v3.0", ], default="kadirnar/yolov6s-v3.0", ), gr.inputs.Slider(minimum=320, maximum=1280, default=1280, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "YOLOv6: a single-stage object detection framework dedicated to industrial applications." examples = [['highway1.jpg', 'kadirnar/yolov6m6-v3.0', 1280, 0.25, 0.45],['highway.jpg', 'kadirnar/yolov6s6-v3.0', 1280, 0.25, 0.45]] demo_app = gr.Interface( fn=yolov6_inference, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, theme='huggingface', ) demo_app.launch(debug=True, enable_queue=True)