import gradio as gr import spaces import torch import base64 from PIL import Image, ImageDraw from io import BytesIO import re from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM from deepseek_vl2.utils.io import load_pil_images from transformers import AutoModelForCausalLM models = { "deepseek-ai/deepseek-vl2-tiny": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2-tiny", trust_remote_code=True), #"deepseek-ai/deepseek-vl2-small": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2-small", trust_remote_code=True), #"deepseek-ai/deepseek-vl2": AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2", trust_remote_code=True) } processors = { "deepseek-ai/deepseek-vl2-tiny": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2-tiny",), #"deepseek-ai/deepseek-vl2-small": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2-small",), #"deepseek-ai/deepseek-vl2": DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2",), } def image_to_base64(image): buffered = BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") return img_str def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2): draw = ImageDraw.Draw(image) for box in bounding_boxes: xmin, ymin, xmax, ymax = box draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width) return image def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000): x_scale = original_width / scaled_width y_scale = original_height / scaled_height rescaled_boxes = [] for box in bounding_boxes: xmin, ymin, xmax, ymax = box rescaled_box = [ xmin * x_scale, ymin * y_scale, xmax * x_scale, ymax * y_scale ] rescaled_boxes.append(rescaled_box) return rescaled_boxes def deepseek(image, text_input, model_id): # specify the path to the model vl_chat_processor: DeepseekVLV2Processor = processors[model_id] tokenizer = vl_chat_processor.tokenizer vl_gpt: DeepseekVLV2ForCausalLM = models[model_id] vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() ## single image conversation example conversation = [ { "role": "<|User|>", "content": f"<|ref|>{text_input}<|/ref|>.", "images": ["./images/visual_grounding_1.jpeg"], }, {"role": "<|Assistant|>", "content": ""}, ] # load images and prepare for inputs #pil_images = load_pil_images(conversation) prepare_inputs = vl_chat_processor( conversations=conversation, images=[image], force_batchify=True, system_prompt="" ).to(vl_gpt.device) with torch.no_grad(): # run image encoder to get the image embeddings inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) inputs_embeds, past_key_values = vl_gpt.incremental_prefilling( input_ids=prepare_inputs.input_ids, images=prepare_inputs.images, images_seq_mask=prepare_inputs.images_seq_mask, images_spatial_crop=prepare_inputs.images_spatial_crop, attention_mask=prepare_inputs.attention_mask, chunk_size=512 # prefilling size ) # run the model to get the response outputs = vl_gpt.generate( inputs_embeds=inputs_embeds, input_ids=prepare_inputs.input_ids, images=prepare_inputs.images, images_seq_mask=prepare_inputs.images_seq_mask, images_spatial_crop=prepare_inputs.images_spatial_crop, attention_mask=prepare_inputs.attention_mask, past_key_values=past_key_values, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, do_sample=False, use_cache=True, ) answer = tokenizer.decode(outputs[0][len(prepare_inputs.input_ids[0]):].cpu().tolist(), skip_special_tokens=False) print(f"{prepare_inputs['sft_format'][0]}", answer) det_pattern = r"<\|det\|>\[\[(.+)]]<\|\/det\|>" det_match = re.search(det_pattern, answer) if det_match is None: return text_input, [], image det_content = det_match.group(1) bbox = [int(v.strip()) for v in det_content.split(",")] scaled_boxes = rescale_bounding_boxes([bbox], image.width, image.height) return answer, scaled_boxes, draw_bounding_boxes(image, scaled_boxes) @spaces.GPU def run_example(image, text_input, model_id="deepseek-ai/deepseek-vl2-tiny"): return deepseek(image, text_input, model_id) css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.Markdown( """ # Demo for Deepseek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding """) with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Image", type="pil") model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="deepseek-ai/deepseek-vl2-tiny") text_input = gr.Textbox(label="User Prompt") submit_btn = gr.Button(value="Submit") with gr.Column(): model_output_text = gr.Textbox(label="Model Output Text") model_output_box = gr.Textbox(label="Model Output Box") annotated_image = gr.Image(label="Annotated Image") gr.Examples( examples=[ ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "select search textfield"], ["assets/web_6f93090a-81f6-489e-bb35-1a2838b18c01.png", "switch to discussions"], ], inputs=[input_img, text_input], outputs=[model_output_text, model_output_box, annotated_image], fn=run_example, cache_examples=True, label="Try examples" ) submit_btn.click(run_example, [input_img, text_input, model_selector], [model_output_text, model_output_box, annotated_image]) demo.launch(debug=True)