Update main.py
Browse files
main.py
CHANGED
@@ -1,1237 +1,44 @@
|
|
1 |
-
from
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from PIL import Image
|
5 |
-
from einops import rearrange
|
6 |
-
from torchvision.transforms.v2 import (
|
7 |
-
Compose,
|
8 |
-
Resize,
|
9 |
-
InterpolationMode,
|
10 |
-
ToImage,
|
11 |
-
ToDtype,
|
12 |
-
Normalize,
|
13 |
-
)
|
14 |
-
|
15 |
-
from transformers import CodeGenTokenizerFast as Tokenizer
|
16 |
-
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
17 |
-
import re
|
18 |
-
|
19 |
-
import math
|
20 |
-
from typing import Optional
|
21 |
-
|
22 |
-
from transformers import PretrainedConfig
|
23 |
-
|
24 |
-
|
25 |
-
import math
|
26 |
-
from dataclasses import dataclass, field
|
27 |
-
from typing import Any, Dict, Optional, Tuple, Union
|
28 |
-
|
29 |
-
import torch
|
30 |
-
import torch.nn as nn
|
31 |
-
from einops import rearrange, repeat
|
32 |
-
from transformers import PretrainedConfig, PreTrainedModel
|
33 |
-
from transformers.activations import ACT2FN
|
34 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
35 |
-
|
36 |
-
pad_input, unpad_input = None, None
|
37 |
-
FlashRotaryEmbedding = None
|
38 |
-
FlashSelfAttention, FlashCrossAttention = None, None
|
39 |
-
FusedDense = None
|
40 |
-
|
41 |
-
if torch.cuda.is_available():
|
42 |
-
DEVICE = "cuda"
|
43 |
-
DTYPE = torch.float16
|
44 |
-
else:
|
45 |
-
DEVICE = "cpu"
|
46 |
-
DTYPE = torch.float32
|
47 |
-
|
48 |
-
|
49 |
-
class PhiConfig(PretrainedConfig):
|
50 |
-
"""Phi configuration."""
|
51 |
-
|
52 |
-
model_type = "phi-msft"
|
53 |
-
attribute_map = {
|
54 |
-
"max_position_embeddings": "n_positions",
|
55 |
-
"hidden_size": "n_embd",
|
56 |
-
"num_attention_heads": "n_head",
|
57 |
-
"num_hidden_layers": "n_layer",
|
58 |
-
}
|
59 |
-
|
60 |
-
def __init__(
|
61 |
-
self,
|
62 |
-
vocab_size: int = 50304,
|
63 |
-
n_positions: int = 2048,
|
64 |
-
n_embd: int = 1024,
|
65 |
-
n_layer: int = 20,
|
66 |
-
n_inner: Optional[int] = None,
|
67 |
-
n_head: int = 16,
|
68 |
-
n_head_kv: Optional[int] = None,
|
69 |
-
rotary_dim: Optional[int] = 32,
|
70 |
-
activation_function: Optional[str] = "gelu_new",
|
71 |
-
flash_attn: bool = False,
|
72 |
-
flash_rotary: bool = False,
|
73 |
-
fused_dense: bool = False,
|
74 |
-
attn_pdrop: float = 0.0,
|
75 |
-
embd_pdrop: float = 0.0,
|
76 |
-
resid_pdrop: float = 0.0,
|
77 |
-
layer_norm_epsilon: float = 1e-5,
|
78 |
-
initializer_range: float = 0.02,
|
79 |
-
tie_word_embeddings: bool = False,
|
80 |
-
pad_vocab_size_multiple: int = 64,
|
81 |
-
gradient_checkpointing: bool = False,
|
82 |
-
**kwargs,
|
83 |
-
) -> None:
|
84 |
-
self.vocab_size = int(
|
85 |
-
math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
|
86 |
-
)
|
87 |
-
self.n_positions = n_positions
|
88 |
-
self.n_embd = n_embd
|
89 |
-
self.n_layer = n_layer
|
90 |
-
self.n_inner = n_inner
|
91 |
-
self.n_head = n_head
|
92 |
-
self.n_head_kv = n_head_kv
|
93 |
-
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
94 |
-
self.activation_function = activation_function
|
95 |
-
self.flash_attn = flash_attn
|
96 |
-
self.flash_rotary = flash_rotary
|
97 |
-
self.fused_dense = fused_dense
|
98 |
-
self.attn_pdrop = attn_pdrop
|
99 |
-
self.embd_pdrop = embd_pdrop
|
100 |
-
self.resid_pdrop = resid_pdrop
|
101 |
-
self.layer_norm_epsilon = layer_norm_epsilon
|
102 |
-
self.initializer_range = initializer_range
|
103 |
-
self.gradient_checkpointing = gradient_checkpointing
|
104 |
-
|
105 |
-
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
106 |
-
|
107 |
-
|
108 |
-
@dataclass
|
109 |
-
class InferenceParams:
|
110 |
-
"""Inference parameters passed to model to efficiently calculate
|
111 |
-
and store context during inference.
|
112 |
-
|
113 |
-
Reference:
|
114 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
115 |
-
|
116 |
-
Args:
|
117 |
-
max_seqlen: Maximum sequence length.
|
118 |
-
max_batch_size: Maximum batch size.
|
119 |
-
seqlen_offset: Sequence length offset.
|
120 |
-
batch_size_offset: Batch size offset.
|
121 |
-
key_value_memory_dict: Key value memory dictionary.
|
122 |
-
lengths_per_sample: Lengths per sample.
|
123 |
-
|
124 |
-
"""
|
125 |
-
|
126 |
-
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
|
127 |
-
|
128 |
-
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
129 |
-
|
130 |
-
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
|
131 |
-
|
132 |
-
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
133 |
-
|
134 |
-
key_value_memory_dict: Dict[str, Any] = field(
|
135 |
-
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
136 |
-
)
|
137 |
-
|
138 |
-
lengths_per_sample: torch.Tensor = field(
|
139 |
-
default=None, metadata={"help": "Lengths per sample."}
|
140 |
-
)
|
141 |
-
|
142 |
-
|
143 |
-
class Embedding(nn.Module):
|
144 |
-
"""Token embedding with dropout."""
|
145 |
-
|
146 |
-
def __init__(self, config: PretrainedConfig) -> None:
|
147 |
-
super().__init__()
|
148 |
-
|
149 |
-
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
150 |
-
self.drop = nn.Dropout(config.embd_pdrop)
|
151 |
-
|
152 |
-
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
153 |
-
input_shape = input_ids.size()
|
154 |
-
input_ids = input_ids.view(-1, input_shape[-1])
|
155 |
-
|
156 |
-
hidden_states = self.wte(input_ids)
|
157 |
-
hidden_states = self.drop(hidden_states)
|
158 |
-
|
159 |
-
return hidden_states
|
160 |
-
|
161 |
-
|
162 |
-
# @torch.compile
|
163 |
-
def _apply_rotary_emb(
|
164 |
-
x: torch.FloatTensor,
|
165 |
-
cos: torch.FloatTensor,
|
166 |
-
sin: torch.FloatTensor,
|
167 |
-
) -> torch.FloatTensor:
|
168 |
-
_, seqlen, _, _ = x.shape
|
169 |
-
_, rotary_dim = cos.shape
|
170 |
-
rotary_dim *= 2
|
171 |
-
|
172 |
-
x_rot = x[:, :, :, :rotary_dim]
|
173 |
-
x_pass = x[:, :, :, rotary_dim:]
|
174 |
-
|
175 |
-
x1, x2 = x_rot.chunk(2, dim=-1)
|
176 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
|
177 |
-
sin[:seqlen], "s d -> s 1 d"
|
178 |
-
)
|
179 |
-
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
|
180 |
-
|
181 |
-
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
|
182 |
-
|
183 |
-
return torch.cat([x_rot, x_pass], axis=-1)
|
184 |
-
|
185 |
-
|
186 |
-
# @torch.compile
|
187 |
-
def _apply_rotary_emb_kv(
|
188 |
-
kv: torch.FloatTensor,
|
189 |
-
cos: torch.FloatTensor,
|
190 |
-
sin: torch.FloatTensor,
|
191 |
-
cos_k: Optional[torch.FloatTensor] = None,
|
192 |
-
sin_k: Optional[torch.FloatTensor] = None,
|
193 |
-
) -> torch.FloatTensor:
|
194 |
-
_, seqlen, _, _, _ = kv.shape
|
195 |
-
_, rotary_dim = cos.shape
|
196 |
-
rotary_dim *= 2
|
197 |
-
|
198 |
-
k_rot = kv[:, :, 0, :, :rotary_dim]
|
199 |
-
k_pass = kv[:, :, 0, :, rotary_dim:]
|
200 |
-
|
201 |
-
k1, k2 = k_rot.chunk(2, dim=-1)
|
202 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
|
203 |
-
sin[:seqlen], "s d -> s 1 d"
|
204 |
-
)
|
205 |
-
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
|
206 |
-
|
207 |
-
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
|
208 |
-
|
209 |
-
return torch.cat(
|
210 |
-
[
|
211 |
-
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
212 |
-
kv[:, :, 1:2, :, :],
|
213 |
-
],
|
214 |
-
axis=2,
|
215 |
-
)
|
216 |
-
|
217 |
-
|
218 |
-
# @torch.compile
|
219 |
-
def _apply_rotary_emb_qkv(
|
220 |
-
qkv: torch.FloatTensor,
|
221 |
-
cos: torch.FloatTensor,
|
222 |
-
sin: torch.FloatTensor,
|
223 |
-
cos_k: Optional[torch.FloatTensor] = None,
|
224 |
-
sin_k: Optional[torch.FloatTensor] = None,
|
225 |
-
) -> torch.FloatTensor:
|
226 |
-
_, seqlen, _, _, _ = qkv.shape
|
227 |
-
_, rotary_dim = cos.shape
|
228 |
-
rotary_dim *= 2
|
229 |
-
|
230 |
-
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
231 |
-
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
232 |
-
|
233 |
-
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
234 |
-
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
235 |
-
|
236 |
-
q1, q2 = q_rot.chunk(2, dim=-1)
|
237 |
-
k1, k2 = k_rot.chunk(2, dim=-1)
|
238 |
-
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
|
239 |
-
sin[:seqlen], "s d -> s 1 d"
|
240 |
-
)
|
241 |
-
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
242 |
-
|
243 |
-
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
244 |
-
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
245 |
-
|
246 |
-
return torch.cat(
|
247 |
-
[
|
248 |
-
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
249 |
-
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
250 |
-
qkv[:, :, 2:3, :, :],
|
251 |
-
],
|
252 |
-
axis=2,
|
253 |
-
)
|
254 |
-
|
255 |
-
|
256 |
-
class RotaryEmbedding(nn.Module):
|
257 |
-
"""Rotary positional embedding (RoPE).
|
258 |
-
|
259 |
-
Reference:
|
260 |
-
RoFormer: Enhanced Transformer with Rotary Position Embedding.
|
261 |
-
https://arxiv.org/pdf/2104.09864.pdf.
|
262 |
-
|
263 |
-
"""
|
264 |
-
|
265 |
-
def __init__(
|
266 |
-
self,
|
267 |
-
dim: int,
|
268 |
-
base: int = 10000,
|
269 |
-
scale_base: Optional[float] = None,
|
270 |
-
pos_idx_in_fp32: bool = True,
|
271 |
-
max_position_embeddings: int = 2048,
|
272 |
-
device: Optional[str] = None,
|
273 |
-
**kwargs,
|
274 |
-
) -> None:
|
275 |
-
super().__init__()
|
276 |
-
|
277 |
-
if scale_base is not None:
|
278 |
-
raise NotImplementedError
|
279 |
-
|
280 |
-
self.dim = dim
|
281 |
-
self.base = float(base)
|
282 |
-
self.scale_base = scale_base
|
283 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
284 |
-
self.max_position_embeddings = max_position_embeddings
|
285 |
-
self.device = device
|
286 |
-
|
287 |
-
# Generate and save the inverse frequency buffer (non-trainable)
|
288 |
-
inv_freq = self._compute_inv_freq(device)
|
289 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
290 |
-
|
291 |
-
# Generate and save the scale buffer (non-trainable)
|
292 |
-
scale = (
|
293 |
-
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
294 |
-
/ (1.4 * dim)
|
295 |
-
if scale_base is not None
|
296 |
-
else None
|
297 |
-
)
|
298 |
-
self.register_buffer("scale", scale, persistent=False)
|
299 |
-
|
300 |
-
# Initialize cached attributes since ONNX can't rely on dynamic initialization
|
301 |
-
self._update_cos_sin_cache(
|
302 |
-
max_position_embeddings, device=device, dtype=torch.float32
|
303 |
-
)
|
304 |
-
|
305 |
-
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
|
306 |
-
return 1.0 / (
|
307 |
-
self.base
|
308 |
-
** (
|
309 |
-
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
310 |
-
/ self.dim
|
311 |
-
)
|
312 |
-
)
|
313 |
-
|
314 |
-
def _update_cos_sin_cache(
|
315 |
-
self,
|
316 |
-
seqlen: int,
|
317 |
-
device: Optional[str] = None,
|
318 |
-
dtype: Optional[torch.dtype] = None,
|
319 |
-
) -> None:
|
320 |
-
self._seq_len_cached = seqlen
|
321 |
-
|
322 |
-
# fp32 is preferred since the output of `torch.arange` can be quite large
|
323 |
-
# and bf16 would lose a lot of precision
|
324 |
-
if self.pos_idx_in_fp32:
|
325 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
326 |
-
if self.inv_freq.dtype != torch.float32:
|
327 |
-
inv_freq = self._compute_inv_freq(device=device)
|
328 |
-
else:
|
329 |
-
inv_freq = self.inv_freq
|
330 |
-
else:
|
331 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
332 |
-
inv_freq = self.inv_freq
|
333 |
-
|
334 |
-
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
|
335 |
-
freqs = torch.outer(t, inv_freq)
|
336 |
-
if self.scale is None:
|
337 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
338 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
339 |
-
else:
|
340 |
-
power = (
|
341 |
-
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
342 |
-
- seqlen // 2
|
343 |
-
) / self.scale_base
|
344 |
-
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
345 |
-
|
346 |
-
# Force the scale multiplication to happen in fp32
|
347 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
348 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
349 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
350 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
351 |
-
|
352 |
-
def forward(
|
353 |
-
self,
|
354 |
-
qkv: torch.Tensor,
|
355 |
-
kv: Optional[torch.Tensor] = None,
|
356 |
-
seqlen_offset: int = 0,
|
357 |
-
**kwargs,
|
358 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
359 |
-
if (
|
360 |
-
self._seq_len_cached < qkv.shape[1] + seqlen_offset
|
361 |
-
or self._cos_cached.device != qkv.device
|
362 |
-
or self._cos_cached.dtype != qkv.dtype
|
363 |
-
or (self.training and self._cos_cached.is_inference())
|
364 |
-
):
|
365 |
-
self._update_cos_sin_cache(
|
366 |
-
qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype
|
367 |
-
)
|
368 |
-
|
369 |
-
if kv is None:
|
370 |
-
return _apply_rotary_emb_qkv(
|
371 |
-
qkv,
|
372 |
-
self._cos_cached[seqlen_offset:],
|
373 |
-
self._sin_cached[seqlen_offset:],
|
374 |
-
)
|
375 |
-
else:
|
376 |
-
q = _apply_rotary_emb(
|
377 |
-
qkv,
|
378 |
-
self._cos_cached[seqlen_offset:],
|
379 |
-
self._sin_cached[seqlen_offset:],
|
380 |
-
)
|
381 |
-
kv = _apply_rotary_emb_kv(
|
382 |
-
kv,
|
383 |
-
self._cos_cached[seqlen_offset:],
|
384 |
-
self._sin_cached[seqlen_offset:],
|
385 |
-
)
|
386 |
-
|
387 |
-
return q, kv
|
388 |
-
|
389 |
-
|
390 |
-
class MLP(nn.Module):
|
391 |
-
"""Multi-Layer Perceptron.
|
392 |
-
|
393 |
-
Reference:
|
394 |
-
Attention Is All You Need.
|
395 |
-
https://arxiv.org/pdf/1706.03762.pdf.
|
396 |
-
|
397 |
-
"""
|
398 |
-
|
399 |
-
def __init__(
|
400 |
-
self,
|
401 |
-
config: PretrainedConfig,
|
402 |
-
n_inner: Optional[int] = None,
|
403 |
-
act_fn: Optional[str] = None,
|
404 |
-
) -> None:
|
405 |
-
super().__init__()
|
406 |
-
|
407 |
-
act_fn = config.activation_function if act_fn is None else act_fn
|
408 |
-
|
409 |
-
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
410 |
-
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
411 |
-
|
412 |
-
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
413 |
-
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
414 |
-
self.act = ACT2FN[act_fn]
|
415 |
-
|
416 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
417 |
-
hidden_states = self.fc1(hidden_states)
|
418 |
-
hidden_states = self.act(hidden_states)
|
419 |
-
hidden_states = self.fc2(hidden_states)
|
420 |
-
|
421 |
-
return hidden_states
|
422 |
-
|
423 |
-
|
424 |
-
class SelfAttention(nn.Module):
|
425 |
-
"""Self-attention layer (compatible with PyTorch).
|
426 |
-
|
427 |
-
Reference:
|
428 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
429 |
-
|
430 |
-
"""
|
431 |
-
|
432 |
-
def __init__(
|
433 |
-
self,
|
434 |
-
causal: bool = True,
|
435 |
-
softmax_scale: Optional[float] = None,
|
436 |
-
attention_dropout: float = 0.0,
|
437 |
-
) -> None:
|
438 |
-
super().__init__()
|
439 |
-
|
440 |
-
self.causal = causal
|
441 |
-
self.softmax_scale = softmax_scale
|
442 |
-
self.drop = nn.Dropout(attention_dropout)
|
443 |
-
|
444 |
-
@torch.autocast("cpu", enabled=False)
|
445 |
-
@torch.autocast("cuda", enabled=False)
|
446 |
-
def forward(
|
447 |
-
self,
|
448 |
-
qkv: torch.FloatTensor,
|
449 |
-
causal: bool = None,
|
450 |
-
key_padding_mask: Optional[torch.BoolTensor] = None,
|
451 |
-
**kwargs,
|
452 |
-
) -> torch.FloatTensor:
|
453 |
-
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
454 |
-
q, k, v = qkv.unbind(dim=2)
|
455 |
-
|
456 |
-
q = q.to(torch.float32)
|
457 |
-
k = k.to(torch.float32)
|
458 |
-
|
459 |
-
causal = self.causal if causal is None else causal
|
460 |
-
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
461 |
-
|
462 |
-
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
463 |
-
# using float16, which might lead to overflow
|
464 |
-
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
465 |
-
|
466 |
-
if key_padding_mask is not None:
|
467 |
-
padding_mask = torch.full(
|
468 |
-
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
|
469 |
-
)
|
470 |
-
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
471 |
-
|
472 |
-
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
473 |
-
|
474 |
-
if causal:
|
475 |
-
causal_mask = torch.triu(
|
476 |
-
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
|
477 |
-
)
|
478 |
-
scores = scores + causal_mask.to(dtype=scores.dtype)
|
479 |
-
|
480 |
-
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
481 |
-
attention = self.drop(attention)
|
482 |
-
|
483 |
-
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
484 |
-
|
485 |
-
return output
|
486 |
-
|
487 |
-
|
488 |
-
class CrossAttention(nn.Module):
|
489 |
-
"""Cross-attention layer (compatible with PyTorch).
|
490 |
-
|
491 |
-
Reference:
|
492 |
-
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
493 |
-
|
494 |
-
"""
|
495 |
-
|
496 |
-
def __init__(
|
497 |
-
self,
|
498 |
-
causal: bool = True,
|
499 |
-
softmax_scale: Optional[float] = None,
|
500 |
-
attention_dropout: float = 0.0,
|
501 |
-
) -> None:
|
502 |
-
super().__init__()
|
503 |
-
|
504 |
-
self.causal = causal
|
505 |
-
self.softmax_scale = softmax_scale
|
506 |
-
self.drop = nn.Dropout(attention_dropout)
|
507 |
-
|
508 |
-
@torch.autocast("cpu", enabled=False)
|
509 |
-
@torch.autocast("cuda", enabled=False)
|
510 |
-
def forward(
|
511 |
-
self,
|
512 |
-
q: torch.FloatTensor,
|
513 |
-
kv: torch.FloatTensor,
|
514 |
-
causal: bool = None,
|
515 |
-
key_padding_mask: Optional[torch.BoolTensor] = None,
|
516 |
-
**kwargs,
|
517 |
-
) -> torch.FloatTensor:
|
518 |
-
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
519 |
-
seqlen_k = kv.shape[1]
|
520 |
-
|
521 |
-
if kv.shape[3] != q.shape[2]:
|
522 |
-
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
523 |
-
k, v = kv.unbind(dim=2)
|
524 |
-
|
525 |
-
q = q.to(torch.float32)
|
526 |
-
k = k.to(torch.float32)
|
527 |
-
|
528 |
-
causal = self.causal if causal is None else causal
|
529 |
-
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
530 |
-
|
531 |
-
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
532 |
-
# using float16, which might lead to overflow
|
533 |
-
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
534 |
-
|
535 |
-
if key_padding_mask is not None:
|
536 |
-
padding_mask = torch.full(
|
537 |
-
(batch_size, seqlen_k),
|
538 |
-
-10000.0,
|
539 |
-
dtype=scores.dtype,
|
540 |
-
device=scores.device,
|
541 |
-
)
|
542 |
-
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
543 |
-
|
544 |
-
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
545 |
-
|
546 |
-
if causal:
|
547 |
-
rows = rearrange(
|
548 |
-
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
|
549 |
-
)
|
550 |
-
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
|
551 |
-
causal_mask = cols > rows + seqlen_k - seqlen_q
|
552 |
-
|
553 |
-
scores = scores.masked_fill(causal_mask, -10000.0)
|
554 |
-
|
555 |
-
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
556 |
-
attention = self.drop(attention)
|
557 |
-
|
558 |
-
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
559 |
-
|
560 |
-
return output
|
561 |
-
|
562 |
-
|
563 |
-
def _find_mha_dims(
|
564 |
-
config: PretrainedConfig,
|
565 |
-
n_head: Optional[int] = None,
|
566 |
-
n_head_kv: Optional[int] = None,
|
567 |
-
head_dim: Optional[int] = None,
|
568 |
-
) -> Tuple[int, int]:
|
569 |
-
if n_head is None and head_dim is None:
|
570 |
-
head_dim = config.n_embd // config.n_head
|
571 |
-
n_head = config.n_head
|
572 |
-
elif n_head is None or head_dim is None:
|
573 |
-
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
574 |
-
|
575 |
-
if n_head_kv is None:
|
576 |
-
n_head_kv = getattr(config, "n_head_kv", None) or n_head
|
577 |
-
|
578 |
-
return n_head, n_head_kv, head_dim
|
579 |
-
|
580 |
-
|
581 |
-
def _update_kv_cache(
|
582 |
-
kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
|
583 |
-
) -> torch.FloatTensor:
|
584 |
-
num_heads, head_dim = kv.shape[-2:]
|
585 |
-
|
586 |
-
if layer_idx not in inference_params.key_value_memory_dict:
|
587 |
-
inference_params.key_value_memory_dict[layer_idx] = torch.empty(
|
588 |
-
inference_params.max_batch_size,
|
589 |
-
inference_params.max_seqlen,
|
590 |
-
2,
|
591 |
-
num_heads,
|
592 |
-
head_dim,
|
593 |
-
dtype=kv.dtype,
|
594 |
-
device=kv.device,
|
595 |
-
)
|
596 |
-
|
597 |
-
batch_start = inference_params.batch_size_offset
|
598 |
-
batch_end = batch_start + kv.shape[0]
|
599 |
-
|
600 |
-
sequence_start = inference_params.seqlen_offset
|
601 |
-
sequence_end = sequence_start + kv.shape[1]
|
602 |
-
|
603 |
-
# When the current sequence length is equal to or larger than the maximum sequence length,
|
604 |
-
# we need to concatenate the current `kv` with the cached `kv` to expand its length
|
605 |
-
if sequence_end >= inference_params.max_seqlen:
|
606 |
-
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate(
|
607 |
-
(inference_params.key_value_memory_dict[layer_idx], kv), dim=1
|
608 |
-
)
|
609 |
-
|
610 |
-
inference_params.key_value_memory_dict[layer_idx][
|
611 |
-
batch_start:batch_end, sequence_start:sequence_end, ...
|
612 |
-
] = kv
|
613 |
-
kv = inference_params.key_value_memory_dict[layer_idx][
|
614 |
-
batch_start:batch_end, :sequence_end, ...
|
615 |
-
]
|
616 |
-
|
617 |
-
return kv
|
618 |
-
|
619 |
-
|
620 |
-
class MHA(nn.Module):
|
621 |
-
"""Multi-head attention layer."""
|
622 |
-
|
623 |
-
def __init__(
|
624 |
-
self,
|
625 |
-
config: PretrainedConfig,
|
626 |
-
dtype: Optional[torch.dtype] = None,
|
627 |
-
device: Optional[str] = None,
|
628 |
-
rotary_dim: Optional[int] = None,
|
629 |
-
rotary_base: float = 10000.0,
|
630 |
-
rotary_scale_base: Optional[float] = None,
|
631 |
-
n_head: Optional[int] = None,
|
632 |
-
n_head_kv: Optional[int] = None,
|
633 |
-
head_dim: Optional[int] = None,
|
634 |
-
bias: bool = True,
|
635 |
-
causal: bool = True,
|
636 |
-
softmax_scale: Optional[float] = None,
|
637 |
-
layer_idx: Optional[int] = None,
|
638 |
-
return_residual: bool = False,
|
639 |
-
checkpointing: bool = False,
|
640 |
-
) -> None:
|
641 |
-
super().__init__()
|
642 |
-
|
643 |
-
# Rotary embedding
|
644 |
-
self.rotary_dim = (
|
645 |
-
rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
646 |
-
)
|
647 |
-
|
648 |
-
if self.rotary_dim > 0:
|
649 |
-
self.rotary_emb = RotaryEmbedding(
|
650 |
-
self.rotary_dim,
|
651 |
-
base=rotary_base,
|
652 |
-
scale_base=rotary_scale_base,
|
653 |
-
device=device,
|
654 |
-
max_position_embeddings=config.n_positions,
|
655 |
-
)
|
656 |
-
|
657 |
-
# MLP
|
658 |
-
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
|
659 |
-
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
|
660 |
-
)
|
661 |
-
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
|
662 |
-
hidden_size = config.n_embd
|
663 |
-
|
664 |
-
linear_cls = FusedDense if config.fused_dense else nn.Linear
|
665 |
-
if linear_cls is None:
|
666 |
-
linear_cls = nn.Linear
|
667 |
-
|
668 |
-
self.Wqkv = linear_cls(
|
669 |
-
hidden_size, op_size, bias=bias, device=device, dtype=dtype
|
670 |
-
)
|
671 |
-
self.out_proj = linear_cls(
|
672 |
-
hidden_size, hidden_size, bias=bias, device=device, dtype=dtype
|
673 |
-
)
|
674 |
-
|
675 |
-
# Attention
|
676 |
-
self.inner_attn = SelfAttention(
|
677 |
-
causal=causal,
|
678 |
-
softmax_scale=softmax_scale,
|
679 |
-
attention_dropout=config.attn_pdrop,
|
680 |
-
)
|
681 |
-
self.inner_cross_attn = CrossAttention(
|
682 |
-
causal=causal,
|
683 |
-
softmax_scale=softmax_scale,
|
684 |
-
attention_dropout=config.attn_pdrop,
|
685 |
-
)
|
686 |
-
|
687 |
-
self.layer_idx = layer_idx
|
688 |
-
self.return_residual = return_residual
|
689 |
-
self.checkpointing = checkpointing
|
690 |
-
|
691 |
-
def _forward_self_attn(
|
692 |
-
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
|
693 |
-
) -> torch.FloatTensor:
|
694 |
-
qkv = self.Wqkv(x)
|
695 |
-
qkv = rearrange(
|
696 |
-
qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim
|
697 |
-
)
|
698 |
-
|
699 |
-
if self.rotary_dim > 0:
|
700 |
-
qkv = self.rotary_emb(qkv)
|
701 |
-
|
702 |
-
if self.checkpointing:
|
703 |
-
return torch.utils.checkpoint.checkpoint(
|
704 |
-
self.inner_attn, qkv, key_padding_mask=key_padding_mask
|
705 |
-
)
|
706 |
-
|
707 |
-
return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
|
708 |
-
|
709 |
-
def _forward_cross_attn(
|
710 |
-
self,
|
711 |
-
x: torch.FloatTensor,
|
712 |
-
past_key_values: Optional[InferenceParams],
|
713 |
-
key_padding_mask: Optional[torch.BoolTensor],
|
714 |
-
) -> torch.FloatTensor:
|
715 |
-
batch_size = x.shape[0]
|
716 |
-
|
717 |
-
qkv = self.Wqkv(x)
|
718 |
-
|
719 |
-
q = qkv[..., : self.n_head * self.head_dim]
|
720 |
-
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
721 |
-
|
722 |
-
kv = qkv[..., self.n_head * self.head_dim :]
|
723 |
-
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
724 |
-
|
725 |
-
seqlen_offset = (
|
726 |
-
past_key_values.seqlen_offset if past_key_values is not None else 0
|
727 |
-
)
|
728 |
-
causal = None if seqlen_offset == 0 else False
|
729 |
-
if self.rotary_dim > 0:
|
730 |
-
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
|
731 |
-
|
732 |
-
if past_key_values is not None:
|
733 |
-
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
|
734 |
-
|
735 |
-
if self.checkpointing:
|
736 |
-
return torch.utils.checkpoint.checkpoint(
|
737 |
-
self.inner_cross_attn,
|
738 |
-
q,
|
739 |
-
kv,
|
740 |
-
key_padding_mask=key_padding_mask,
|
741 |
-
causal=causal,
|
742 |
-
)
|
743 |
-
|
744 |
-
return self.inner_cross_attn(
|
745 |
-
q, kv, key_padding_mask=key_padding_mask, causal=causal
|
746 |
-
)
|
747 |
-
|
748 |
-
def forward(
|
749 |
-
self,
|
750 |
-
x: torch.FloatTensor,
|
751 |
-
past_key_values: Optional[InferenceParams] = None,
|
752 |
-
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
753 |
-
**kwargs,
|
754 |
-
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
755 |
-
if attention_mask is not None:
|
756 |
-
attention_mask = attention_mask.bool()
|
757 |
-
else:
|
758 |
-
attention_mask = None
|
759 |
-
|
760 |
-
# MHA
|
761 |
-
if self.n_head == self.n_head_kv:
|
762 |
-
if past_key_values is None:
|
763 |
-
# If `past_key_values` are not supplied, we run self-attention
|
764 |
-
attn_output = self._forward_self_attn(x, attention_mask)
|
765 |
-
else:
|
766 |
-
# If `past_key_values` are supplied, it means that we might have cached values and
|
767 |
-
# could take advantage of cross-attention
|
768 |
-
attn_output = self._forward_cross_attn(
|
769 |
-
x, past_key_values, attention_mask
|
770 |
-
)
|
771 |
-
# MQA / GQA
|
772 |
-
else:
|
773 |
-
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
|
774 |
-
# because `q` and `kv` lengths might be different
|
775 |
-
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
776 |
-
|
777 |
-
output = rearrange(attn_output, "... h d -> ... (h d)")
|
778 |
-
output = self.out_proj(output)
|
779 |
-
|
780 |
-
return output if not self.return_residual else (output, x)
|
781 |
-
|
782 |
-
|
783 |
-
class ParallelBlock(nn.Module):
|
784 |
-
"""Parallel block.
|
785 |
-
|
786 |
-
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
787 |
-
|
788 |
-
"""
|
789 |
-
|
790 |
-
def __init__(
|
791 |
-
self,
|
792 |
-
config: PretrainedConfig,
|
793 |
-
block_idx: Optional[int] = None,
|
794 |
-
) -> None:
|
795 |
-
super().__init__()
|
796 |
-
|
797 |
-
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
798 |
-
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
799 |
-
self.block_idx = block_idx
|
800 |
-
|
801 |
-
self.mixer = MHA(config, layer_idx=block_idx)
|
802 |
-
self.mlp = MLP(config)
|
803 |
-
|
804 |
-
def forward(
|
805 |
-
self,
|
806 |
-
hidden_states: torch.FloatTensor,
|
807 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
808 |
-
attention_mask: Optional[torch.BoolTensor] = None,
|
809 |
-
**kwargs,
|
810 |
-
) -> torch.FloatTensor:
|
811 |
-
residual = hidden_states
|
812 |
-
hidden_states = self.ln(hidden_states)
|
813 |
-
|
814 |
-
attn_outputs = self.mixer(
|
815 |
-
hidden_states,
|
816 |
-
past_key_values=past_key_values,
|
817 |
-
attention_mask=attention_mask,
|
818 |
-
)
|
819 |
-
if isinstance(attn_outputs, tuple):
|
820 |
-
attn_outputs = attn_outputs[0]
|
821 |
-
|
822 |
-
attn_outputs = self.resid_dropout(attn_outputs)
|
823 |
-
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
824 |
-
|
825 |
-
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
826 |
-
|
827 |
-
return hidden_states
|
828 |
-
|
829 |
-
|
830 |
-
class CausalLMHead(nn.Module):
|
831 |
-
"""Causal Language Modeling head.
|
832 |
-
|
833 |
-
Reference:
|
834 |
-
Improving Language Understanding by Generative Pre-Training.
|
835 |
-
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
836 |
-
|
837 |
-
"""
|
838 |
-
|
839 |
-
def __init__(self, config: PretrainedConfig) -> None:
|
840 |
-
super().__init__()
|
841 |
-
|
842 |
-
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
843 |
-
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
844 |
-
|
845 |
-
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
846 |
-
hidden_states = self.ln(hidden_states)
|
847 |
-
logits = self.linear(hidden_states).to(torch.float32)
|
848 |
-
|
849 |
-
return logits
|
850 |
-
|
851 |
-
|
852 |
-
class CausalLMLoss(nn.Module):
|
853 |
-
"""Causal Language Modeling loss.
|
854 |
-
|
855 |
-
Reference:
|
856 |
-
Improving Language Understanding by Generative Pre-Training.
|
857 |
-
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
858 |
-
|
859 |
-
"""
|
860 |
-
|
861 |
-
def __init__(self, shift_labels: bool = True) -> None:
|
862 |
-
super().__init__()
|
863 |
-
|
864 |
-
self.shift_labels = shift_labels
|
865 |
-
self.loss_fct = nn.CrossEntropyLoss()
|
866 |
-
|
867 |
-
def forward(
|
868 |
-
self, logits: torch.FloatTensor, labels: torch.LongTensor
|
869 |
-
) -> torch.FloatTensor:
|
870 |
-
if self.shift_labels:
|
871 |
-
logits = logits[..., :-1, :].contiguous()
|
872 |
-
labels = labels[..., 1:].contiguous()
|
873 |
-
|
874 |
-
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
875 |
-
|
876 |
-
return loss
|
877 |
-
|
878 |
-
|
879 |
-
class PhiPreTrainedModel(PreTrainedModel):
|
880 |
-
"""Phi pre-trained model."""
|
881 |
-
|
882 |
-
config_class = PhiConfig
|
883 |
-
base_model_prefix = "transformer"
|
884 |
-
supports_gradient_checkpointing = False
|
885 |
-
_no_split_modules = ["ParallelBlock"]
|
886 |
-
|
887 |
-
def __init__(self, *inputs, **kwargs) -> None:
|
888 |
-
super().__init__(*inputs, **kwargs)
|
889 |
-
|
890 |
-
def prepare_inputs_for_generation(
|
891 |
-
self,
|
892 |
-
input_ids: torch.LongTensor = None,
|
893 |
-
inputs_embeds: torch.FloatTensor = None,
|
894 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
895 |
-
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
896 |
-
**kwargs,
|
897 |
-
) -> Dict[str, Any]:
|
898 |
-
if inputs_embeds is not None:
|
899 |
-
max_batch_size = inputs_embeds.shape[0]
|
900 |
-
seqlen_offset = inputs_embeds.shape[1] + input_ids.shape[1] - 2
|
901 |
-
elif input_ids is not None:
|
902 |
-
max_batch_size = input_ids.shape[0]
|
903 |
-
seqlen_offset = input_ids.shape[1] - 1
|
904 |
-
else:
|
905 |
-
raise ValueError(
|
906 |
-
"You have to specify either `input_ids` or `inputs_embeds`."
|
907 |
-
)
|
908 |
-
|
909 |
-
args = {}
|
910 |
-
|
911 |
-
if past_key_values is None or not (
|
912 |
-
isinstance(past_key_values, InferenceParams)
|
913 |
-
):
|
914 |
-
past_key_values = InferenceParams(
|
915 |
-
max_seqlen=self.config.n_positions,
|
916 |
-
max_batch_size=max_batch_size,
|
917 |
-
seqlen_offset=0,
|
918 |
-
batch_size_offset=0,
|
919 |
-
key_value_memory_dict={},
|
920 |
-
lengths_per_sample=None,
|
921 |
-
)
|
922 |
-
if inputs_embeds is not None:
|
923 |
-
args = {"inputs_embeds": inputs_embeds}
|
924 |
-
elif input_ids is not None:
|
925 |
-
args = {"input_ids": input_ids}
|
926 |
-
else:
|
927 |
-
raise ValueError(
|
928 |
-
"You have to specify either `input_ids` or `inputs_embeds`."
|
929 |
-
)
|
930 |
-
else:
|
931 |
-
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
932 |
-
past_key_values.seqlen_offset = seqlen_offset
|
933 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
934 |
-
args = {"input_ids": input_ids}
|
935 |
-
|
936 |
-
return {
|
937 |
-
**args,
|
938 |
-
"past_key_values": past_key_values,
|
939 |
-
"attention_mask": attention_mask,
|
940 |
-
}
|
941 |
-
|
942 |
-
|
943 |
-
class PhiModel(PhiPreTrainedModel):
|
944 |
-
"""Phi model."""
|
945 |
-
|
946 |
-
_keys_to_ignore_on_load_missing = [""]
|
947 |
-
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
948 |
-
|
949 |
-
def __init__(self, config: PhiConfig) -> None:
|
950 |
-
super().__init__(config)
|
951 |
-
|
952 |
-
self.embd = Embedding(config)
|
953 |
-
self.h = nn.ModuleList(
|
954 |
-
[ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
|
955 |
-
)
|
956 |
-
self.gradient_checkpointing = config.gradient_checkpointing
|
957 |
-
self.post_init()
|
958 |
-
|
959 |
-
def get_input_embeddings(self) -> nn.Embedding:
|
960 |
-
return self.embd.wte
|
961 |
-
|
962 |
-
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
963 |
-
self.embd.wte = new_embeddings
|
964 |
-
|
965 |
-
def forward(
|
966 |
-
self,
|
967 |
-
input_ids: torch.LongTensor = None,
|
968 |
-
inputs_embeds: torch.FloatTensor = None,
|
969 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
970 |
-
attention_mask: Optional[torch.BoolTensor] = None,
|
971 |
-
) -> torch.FloatTensor:
|
972 |
-
if input_ids is not None and inputs_embeds is not None:
|
973 |
-
raise ValueError(
|
974 |
-
"You cannot specify both `input_ids` and `inputs_embeds` at the same time."
|
975 |
-
)
|
976 |
-
elif input_ids is None and inputs_embeds is None:
|
977 |
-
raise ValueError(
|
978 |
-
"You have to specify either `input_ids` or `inputs_embeds`."
|
979 |
-
)
|
980 |
-
elif input_ids is not None:
|
981 |
-
hidden_states = self.embd(input_ids)
|
982 |
-
else:
|
983 |
-
hidden_states = inputs_embeds
|
984 |
-
|
985 |
-
for layer in self.h:
|
986 |
-
if self.gradient_checkpointing:
|
987 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
988 |
-
layer.__call__,
|
989 |
-
hidden_states,
|
990 |
-
past_key_values,
|
991 |
-
attention_mask,
|
992 |
-
use_reentrant=True,
|
993 |
-
)
|
994 |
-
else:
|
995 |
-
hidden_states = layer(
|
996 |
-
hidden_states,
|
997 |
-
past_key_values=past_key_values,
|
998 |
-
attention_mask=attention_mask,
|
999 |
-
)
|
1000 |
-
|
1001 |
-
return hidden_states
|
1002 |
-
|
1003 |
-
|
1004 |
-
class PhiForCausalLM(PhiPreTrainedModel):
|
1005 |
-
"""Phi for Causal Language Modeling."""
|
1006 |
-
|
1007 |
-
_keys_to_ignore_on_load_missing = [""]
|
1008 |
-
_keys_to_ignore_on_load_unexpected = [
|
1009 |
-
r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"
|
1010 |
-
]
|
1011 |
-
|
1012 |
-
def __init__(self, config: PhiConfig) -> None:
|
1013 |
-
super().__init__(config)
|
1014 |
-
|
1015 |
-
self.transformer = PhiModel(config)
|
1016 |
-
self.lm_head = CausalLMHead(config)
|
1017 |
-
self.loss = CausalLMLoss()
|
1018 |
-
|
1019 |
-
self.post_init()
|
1020 |
-
|
1021 |
-
def get_output_embeddings(self) -> nn.Linear:
|
1022 |
-
return self.lm_head.linear
|
1023 |
-
|
1024 |
-
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
1025 |
-
self.lm_head.linear = new_embeddings
|
1026 |
-
|
1027 |
-
def forward(
|
1028 |
-
self,
|
1029 |
-
input_ids: torch.LongTensor = None,
|
1030 |
-
inputs_embeds: torch.FloatTensor = None,
|
1031 |
-
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
1032 |
-
attention_mask: Optional[torch.BoolTensor] = None,
|
1033 |
-
labels: Optional[torch.LongTensor] = None,
|
1034 |
-
**kwargs,
|
1035 |
-
) -> CausalLMOutputWithPast:
|
1036 |
-
hidden_states = self.transformer(
|
1037 |
-
input_ids,
|
1038 |
-
inputs_embeds,
|
1039 |
-
past_key_values=past_key_values,
|
1040 |
-
attention_mask=attention_mask,
|
1041 |
-
)
|
1042 |
-
lm_logits = self.lm_head(hidden_states)
|
1043 |
-
|
1044 |
-
loss = None
|
1045 |
-
if labels is not None:
|
1046 |
-
loss = self.loss(lm_logits, labels)
|
1047 |
-
|
1048 |
-
return CausalLMOutputWithPast(
|
1049 |
-
loss=loss, logits=lm_logits, past_key_values=past_key_values
|
1050 |
-
)
|
1051 |
-
|
1052 |
-
|
1053 |
-
class VisionEncoder(nn.Module):
|
1054 |
-
def __init__(self, model_path: str = "model") -> None:
|
1055 |
-
super().__init__()
|
1056 |
-
self.model = torch.jit.load(f"{model_path}/vision.pt").to(DEVICE, dtype=DTYPE)
|
1057 |
-
self.preprocess = Compose(
|
1058 |
-
[
|
1059 |
-
Resize(size=(384, 384), interpolation=InterpolationMode.BICUBIC),
|
1060 |
-
ToImage(),
|
1061 |
-
ToDtype(torch.float32, scale=True),
|
1062 |
-
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
1063 |
-
]
|
1064 |
-
)
|
1065 |
-
|
1066 |
-
def __call__(self, image: Image) -> torch.Tensor:
|
1067 |
-
with torch.no_grad():
|
1068 |
-
image_vec = self.preprocess(image.convert("RGB")).unsqueeze(0)
|
1069 |
-
image_vec = image_vec[:, :, :-6, :-6]
|
1070 |
-
image_vec = rearrange(
|
1071 |
-
image_vec, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14
|
1072 |
-
)
|
1073 |
-
|
1074 |
-
image_vec = image_vec.to(DEVICE, dtype=DTYPE)
|
1075 |
-
return self.model(image_vec)
|
1076 |
-
|
1077 |
-
|
1078 |
-
class TextModel(nn.Module):
|
1079 |
-
def __init__(self, model_path: str = "model") -> None:
|
1080 |
-
super().__init__()
|
1081 |
-
self.tokenizer = Tokenizer.from_pretrained(f"{model_path}/tokenizer")
|
1082 |
-
phi_config = PhiConfig.from_pretrained(f"{model_path}/text_model_cfg.json")
|
1083 |
-
|
1084 |
-
with init_empty_weights():
|
1085 |
-
self.model = PhiForCausalLM(phi_config)
|
1086 |
-
|
1087 |
-
self.model = load_checkpoint_and_dispatch(
|
1088 |
-
self.model,
|
1089 |
-
f"{model_path}/text_model.pt",
|
1090 |
-
device_map={"": DEVICE},
|
1091 |
-
dtype=DTYPE,
|
1092 |
-
)
|
1093 |
-
|
1094 |
-
self.text_emb = self.model.get_input_embeddings()
|
1095 |
-
|
1096 |
-
def input_embeds(self, prompt, image_embeds):
|
1097 |
-
embeds = []
|
1098 |
-
|
1099 |
-
def _add_toks(toks):
|
1100 |
-
embeds.append(self.text_emb(toks))
|
1101 |
-
|
1102 |
-
def _tokenize(txt):
|
1103 |
-
return self.tokenizer(
|
1104 |
-
txt, return_tensors="pt", add_special_tokens=False
|
1105 |
-
).input_ids.to(self.model.device)
|
1106 |
-
|
1107 |
-
# Add BOS token
|
1108 |
-
_add_toks(
|
1109 |
-
torch.tensor([[self.tokenizer.bos_token_id]], device=self.model.device)
|
1110 |
-
)
|
1111 |
-
|
1112 |
-
if "<image>" not in prompt:
|
1113 |
-
embeds.append(self.text_emb(_tokenize(prompt)))
|
1114 |
-
else:
|
1115 |
-
assert prompt.count("<image>") == 1
|
1116 |
-
before, after = prompt.split("<image>")
|
1117 |
-
embeds.append(self.text_emb(_tokenize(f"{before}<image>")))
|
1118 |
-
embeds.append(image_embeds.to(self.model.device))
|
1119 |
-
embeds.append(self.text_emb(_tokenize(f"</image>{after}")))
|
1120 |
-
|
1121 |
-
return torch.cat(embeds, dim=1)
|
1122 |
-
|
1123 |
-
def generate(
|
1124 |
-
self, image_embeds, prompt, eos_text="Human:", max_new_tokens=128, **kwargs
|
1125 |
-
):
|
1126 |
-
eos_tokens = self.tokenizer(eos_text, add_special_tokens=False)[0].ids
|
1127 |
-
|
1128 |
-
generate_config = {
|
1129 |
-
"eos_token_id": eos_tokens,
|
1130 |
-
"bos_token_id": self.tokenizer.bos_token_id,
|
1131 |
-
"pad_token_id": self.tokenizer.eos_token_id,
|
1132 |
-
"max_new_tokens": max_new_tokens,
|
1133 |
-
**kwargs,
|
1134 |
-
}
|
1135 |
-
|
1136 |
-
with torch.no_grad():
|
1137 |
-
inputs_embeds = self.input_embeds(prompt, image_embeds)
|
1138 |
-
output_ids = self.model.generate(
|
1139 |
-
inputs_embeds=inputs_embeds, **generate_config
|
1140 |
-
)
|
1141 |
-
|
1142 |
-
return self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
1143 |
-
|
1144 |
-
def answer_question(self, image_embeds, question, **kwargs):
|
1145 |
-
prompt = f"<image>\n\nQuestion: {question}\n\nAnswer:"
|
1146 |
-
answer = self.generate(
|
1147 |
-
image_embeds,
|
1148 |
-
prompt,
|
1149 |
-
eos_text="<END>",
|
1150 |
-
max_new_tokens=128,
|
1151 |
-
**kwargs,
|
1152 |
-
)[0]
|
1153 |
-
|
1154 |
-
return re.sub("<$", "", re.sub("END$", "", answer)).strip()
|
1155 |
-
|
1156 |
-
|
1157 |
-
##### GRADIO INTERFACE #####
|
1158 |
-
|
1159 |
-
import gradio as gr
|
1160 |
-
from huggingface_hub import snapshot_download
|
1161 |
-
from threading import Thread
|
1162 |
-
from transformers import TextIteratorStreamer
|
1163 |
-
import hashlib
|
1164 |
-
import os
|
1165 |
-
from fastapi import FastAPI, File, UploadFile, Form
|
1166 |
-
from PIL import Image
|
1167 |
-
from io import BytesIO
|
1168 |
-
from typing import List
|
1169 |
-
from pydantic import BaseModel
|
1170 |
-
from fastapi.responses import HTMLResponse, FileResponse
|
1171 |
from fastapi.staticfiles import StaticFiles
|
1172 |
-
|
1173 |
-
|
1174 |
-
|
1175 |
-
|
|
|
|
|
1176 |
|
1177 |
|
1178 |
|
1179 |
-
# Define a FastAPI app
|
1180 |
app = FastAPI()
|
1181 |
-
def cached_vision_encoder(image):
|
1182 |
-
# Calculate checksum of the image
|
1183 |
-
image_hash = hashlib.sha256(image.tobytes()).hexdigest()
|
1184 |
-
|
1185 |
-
# Check if `image_encoder_cache/{image_hash}.pt` exists, if so load and return it.
|
1186 |
-
# Otherwise, save the encoded image to `image_encoder_cache/{image_hash}.pt` and return it.
|
1187 |
-
cache_path = f"image_encoder_cache/{image_hash}.pt"
|
1188 |
-
if os.path.exists(cache_path):
|
1189 |
-
return torch.load(cache_path).to(DEVICE, dtype=DTYPE)
|
1190 |
-
else:
|
1191 |
-
image_vec = vision_encoder(image).to("cpu", dtype=torch.float16)
|
1192 |
-
os.makedirs("image_encoder_cache", exist_ok=True)
|
1193 |
-
torch.save(image_vec, cache_path)
|
1194 |
-
return image_vec.to(DEVICE, dtype=DTYPE)
|
1195 |
-
def answer_question(image, question):
|
1196 |
-
yield ""
|
1197 |
|
1198 |
-
|
1199 |
-
|
1200 |
-
image_embeds=cached_vision_encoder(image), question=question, streamer=streamer
|
1201 |
-
)
|
1202 |
-
thread = Thread(target=text_model.answer_question, kwargs=generation_kwargs)
|
1203 |
-
thread.start()
|
1204 |
|
1205 |
-
|
1206 |
-
|
1207 |
-
|
1208 |
-
|
1209 |
-
|
1210 |
-
|
1211 |
-
|
1212 |
-
# Concatenate the sentences into a single string
|
1213 |
-
combined_result = " ".join(generated_sentences)
|
1214 |
-
|
1215 |
-
# Return the combined result as a single sentence
|
1216 |
-
yield combined_result
|
1217 |
|
|
|
1218 |
@app.post("/upload/")
|
1219 |
-
async def answer(image: UploadFile = File(...),
|
1220 |
-
|
1221 |
-
|
1222 |
-
|
1223 |
-
|
1224 |
-
|
|
|
|
|
|
|
|
|
1225 |
|
1226 |
-
# Concatenate the sentences into a single string
|
1227 |
-
combined_result = ", ".join(result_list)
|
1228 |
-
|
1229 |
-
# Return the combined result as a single sentence
|
1230 |
-
return {combined_result}
|
1231 |
|
1232 |
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
1233 |
|
1234 |
-
|
1235 |
@app.get("/")
|
1236 |
def index() -> FileResponse:
|
1237 |
-
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
2 |
+
from fastapi.responses import HTMLResponse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from fastapi.staticfiles import StaticFiles
|
4 |
+
from fastapi.templating import Jinja2Templates
|
5 |
+
from fastapi.responses import FileResponse
|
6 |
+
from gradio_client import Client
|
7 |
+
import shutil
|
8 |
+
import os
|
9 |
+
import tempfile
|
10 |
|
11 |
|
12 |
|
|
|
13 |
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
hf_token = os.environ.get('HF_TOKEN')
|
16 |
+
client = Client("Ashrafb/moondream_captioning", hf_token=hf_token)
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Function to make API prediction
|
19 |
+
def predict_image_description(file_path, question):
|
20 |
+
hf_token = os.environ.get('HF_TOKEN')
|
21 |
+
client = Client("Ashrafb/moondream_captioning", hf_token=hf_token)
|
22 |
+
result = client.predict(file_path, question, api_name="/get_caption")
|
23 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Route to handle file upload
|
26 |
@app.post("/upload/")
|
27 |
+
async def answer(image: UploadFile = File(...), question: str = Form(...)):
|
28 |
+
try:
|
29 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
30 |
+
shutil.copyfileobj(image.file, temp_file)
|
31 |
+
temp_file_path = temp_file.name
|
32 |
+
description = predict_image_description(temp_file_path, question)
|
33 |
+
os.unlink(temp_file_path)
|
34 |
+
return {"description}
|
35 |
+
except Exception as e:
|
36 |
+
raise HTTPException(status_code=500, detail=str(e))
|
37 |
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
40 |
|
|
|
41 |
@app.get("/")
|
42 |
def index() -> FileResponse:
|
43 |
+
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
44 |
+
|