|
def ask_gpt4o_for_visualization(query, df, llm): |
|
columns = ', '.join(df.columns) |
|
prompt = f""" |
|
Analyze the query and suggest one or more relevant visualizations. |
|
Query: "{query}" |
|
Available Columns: {columns} |
|
Respond in this JSON format (as a list if multiple suggestions): |
|
[ |
|
{{ |
|
"chart_type": "bar/box/line/scatter", |
|
"x_axis": "column_name", |
|
"y_axis": "column_name", |
|
"group_by": "optional_column_name" |
|
}} |
|
] |
|
""" |
|
response = llm.generate(prompt) |
|
try: |
|
return json.loads(response) |
|
except json.JSONDecodeError: |
|
st.error("β οΈ GPT-4o failed to generate a valid suggestion.") |
|
return None |
|
|
|
def add_stats_to_figure(fig, df, y_axis, chart_type): |
|
""" |
|
Add relevant statistical annotations to the visualization |
|
based on the chart type. |
|
""" |
|
|
|
if not pd.api.types.is_numeric_dtype(df[y_axis]): |
|
st.warning(f"β οΈ Cannot compute statistics for non-numeric column: {y_axis}") |
|
return fig |
|
|
|
|
|
min_val = df[y_axis].min() |
|
max_val = df[y_axis].max() |
|
avg_val = df[y_axis].mean() |
|
median_val = df[y_axis].median() |
|
std_dev_val = df[y_axis].std() |
|
|
|
|
|
stats_text = ( |
|
f"π **Statistics**\n\n" |
|
f"- **Min:** ${min_val:,.2f}\n" |
|
f"- **Max:** ${max_val:,.2f}\n" |
|
f"- **Average:** ${avg_val:,.2f}\n" |
|
f"- **Median:** ${median_val:,.2f}\n" |
|
f"- **Std Dev:** ${std_dev_val:,.2f}" |
|
) |
|
|
|
|
|
if chart_type in ["bar", "line"]: |
|
|
|
fig.add_annotation( |
|
text=stats_text, |
|
xref="paper", yref="paper", |
|
x=1.02, y=1, |
|
showarrow=False, |
|
align="left", |
|
font=dict(size=12, color="black"), |
|
bordercolor="gray", |
|
borderwidth=1, |
|
bgcolor="rgba(255, 255, 255, 0.85)" |
|
) |
|
|
|
|
|
fig.add_hline(y=min_val, line_dash="dot", line_color="red", annotation_text="Min", annotation_position="bottom right") |
|
fig.add_hline(y=median_val, line_dash="dash", line_color="orange", annotation_text="Median", annotation_position="top right") |
|
fig.add_hline(y=avg_val, line_dash="dashdot", line_color="green", annotation_text="Avg", annotation_position="top right") |
|
fig.add_hline(y=max_val, line_dash="dot", line_color="blue", annotation_text="Max", annotation_position="top right") |
|
|
|
elif chart_type == "scatter": |
|
|
|
fig.add_annotation( |
|
text=stats_text, |
|
xref="paper", yref="paper", |
|
x=1.02, y=1, |
|
showarrow=False, |
|
align="left", |
|
font=dict(size=12, color="black"), |
|
bordercolor="gray", |
|
borderwidth=1, |
|
bgcolor="rgba(255, 255, 255, 0.85)" |
|
) |
|
|
|
elif chart_type == "box": |
|
|
|
pass |
|
|
|
elif chart_type == "pie": |
|
|
|
st.info("π Pie charts represent proportions. Additional stats are not applicable.") |
|
|
|
elif chart_type == "heatmap": |
|
|
|
st.info("π Heatmaps inherently reflect distribution. No additional stats added.") |
|
|
|
else: |
|
st.warning(f"β οΈ No statistical overlays applied for unsupported chart type: '{chart_type}'.") |
|
|
|
return fig |
|
|
|
|
|
|
|
def generate_visualization(suggestion, df): |
|
""" |
|
Generate a Plotly visualization based on GPT-4o's suggestion. |
|
If the Y-axis is missing, infer it intelligently. |
|
""" |
|
chart_type = suggestion.get("chart_type", "bar").lower() |
|
x_axis = suggestion.get("x_axis") |
|
y_axis = suggestion.get("y_axis") |
|
group_by = suggestion.get("group_by") |
|
|
|
|
|
if not y_axis: |
|
numeric_columns = df.select_dtypes(include='number').columns.tolist() |
|
|
|
|
|
if x_axis in numeric_columns: |
|
numeric_columns.remove(x_axis) |
|
|
|
|
|
priority_columns = ["salary_in_usd", "income", "earnings", "revenue"] |
|
for col in priority_columns: |
|
if col in numeric_columns: |
|
y_axis = col |
|
break |
|
|
|
|
|
if not y_axis and numeric_columns: |
|
y_axis = numeric_columns[0] |
|
|
|
|
|
if not x_axis or not y_axis: |
|
st.warning("β οΈ Unable to determine appropriate columns for visualization.") |
|
return None |
|
|
|
|
|
plotly_function = getattr(px, chart_type, None) |
|
if not plotly_function: |
|
st.warning(f"β οΈ Unsupported chart type '{chart_type}' suggested by GPT-4o.") |
|
return None |
|
|
|
|
|
plot_args = {"data_frame": df, "x": x_axis, "y": y_axis} |
|
if group_by and group_by in df.columns: |
|
plot_args["color"] = group_by |
|
|
|
try: |
|
|
|
fig = plotly_function(**plot_args) |
|
fig.update_layout( |
|
title=f"{chart_type.title()} Plot of {y_axis.replace('_', ' ').title()} by {x_axis.replace('_', ' ').title()}", |
|
xaxis_title=x_axis.replace('_', ' ').title(), |
|
yaxis_title=y_axis.replace('_', ' ').title(), |
|
) |
|
|
|
|
|
fig = add_statistics_to_visualization(fig, df, y_axis, chart_type) |
|
|
|
return fig |
|
|
|
except Exception as e: |
|
st.error(f"β οΈ Failed to generate visualization: {e}") |
|
return None |
|
|
|
|
|
def generate_multiple_visualizations(suggestions, df): |
|
""" |
|
Generates one or more visualizations based on GPT-4o's suggestions. |
|
Handles both single and multiple suggestions. |
|
""" |
|
visualizations = [] |
|
|
|
for suggestion in suggestions: |
|
fig = generate_visualization(suggestion, df) |
|
if fig: |
|
|
|
fig = add_stats_to_figure(fig, df, suggestion["y_axis"], suggestion["chart_type"]) |
|
visualizations.append(fig) |
|
|
|
if not visualizations and suggestions: |
|
st.warning("β οΈ No valid visualization found. Displaying the most relevant one.") |
|
best_suggestion = suggestions[0] |
|
fig = generate_visualization(best_suggestion, df) |
|
fig = add_stats_to_figure(fig, df, best_suggestion["y_axis"], best_suggestion["chart_type"]) |
|
visualizations.append(fig) |
|
|
|
return visualizations |
|
|
|
|
|
def handle_visualization_suggestions(suggestions, df): |
|
""" |
|
Determines whether to generate a single or multiple visualizations. |
|
""" |
|
visualizations = [] |
|
|
|
|
|
if isinstance(suggestions, list) and len(suggestions) > 1: |
|
visualizations = generate_multiple_visualizations(suggestions, df) |
|
|
|
|
|
elif isinstance(suggestions, dict) or (isinstance(suggestions, list) and len(suggestions) == 1): |
|
suggestion = suggestions[0] if isinstance(suggestions, list) else suggestions |
|
fig = generate_visualization(suggestion, df) |
|
if fig: |
|
visualizations.append(fig) |
|
|
|
|
|
if not visualizations: |
|
st.warning("β οΈ Unable to generate any visualization based on the suggestion.") |
|
|
|
|
|
for fig in visualizations: |
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
|
|
|
|
|
|
----------------- |
|
|
|
def ask_gpt4o_for_visualization(query, df, llm, retries=2): |
|
import json |
|
|
|
|
|
numeric_columns = df.select_dtypes(include='number').columns.tolist() |
|
categorical_columns = df.select_dtypes(exclude='number').columns.tolist() |
|
|
|
|
|
prompt = f""" |
|
Analyze the following query and suggest the most suitable visualization(s) using the dataset. |
|
|
|
**Query:** "{query}" |
|
|
|
**Dataset Overview:** |
|
- **Numeric Columns (for Y-axis):** {', '.join(numeric_columns) if numeric_columns else 'None'} |
|
- **Categorical Columns (for X-axis or grouping):** {', '.join(categorical_columns) if categorical_columns else 'None'} |
|
|
|
**Expected JSON Response:** |
|
[ |
|
{{ |
|
"chart_type": "bar/box/line/scatter/pie/heatmap", |
|
"x_axis": "categorical_or_time_column", |
|
"y_axis": "numeric_column", |
|
"group_by": "optional_column_for_grouping", |
|
"title": "Title of the chart", |
|
"description": "Why this chart is suitable" |
|
}} |
|
] |
|
|
|
**Query-Based Examples:** |
|
|
|
- **Query:** "What is the salary distribution across different job titles?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "box", |
|
"x_axis": "job_title", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "experience_level", |
|
"title": "Salary Distribution by Job Title and Experience", |
|
"description": "A box plot to show how salaries vary across different job titles and experience levels." |
|
}} |
|
|
|
- **Query:** "Show the average salary by company size and employment type." |
|
**Suggested Visualizations:** |
|
[ |
|
{{ |
|
"chart_type": "bar", |
|
"x_axis": "company_size", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "employment_type", |
|
"title": "Average Salary by Company Size and Employment Type", |
|
"description": "A grouped bar chart comparing average salaries across company sizes and employment types." |
|
}}, |
|
{{ |
|
"chart_type": "heatmap", |
|
"x_axis": "company_size", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "employment_type", |
|
"title": "Salary Heatmap by Company Size and Employment Type", |
|
"description": "A heatmap showing salary concentration across company sizes and employment types." |
|
}} |
|
] |
|
|
|
- **Query:** "How has the average salary changed over the years?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "line", |
|
"x_axis": "work_year", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "experience_level", |
|
"title": "Average Salary Trend Over Years", |
|
"description": "A line chart showing how the average salary has changed across different experience levels over the years." |
|
}} |
|
|
|
- **Query:** "What is the employee distribution by company location?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "pie", |
|
"x_axis": "company_location", |
|
"y_axis": null, |
|
"group_by": null, |
|
"title": "Employee Distribution by Company Location", |
|
"description": "A pie chart showing the distribution of employees across company locations." |
|
}} |
|
|
|
- **Query:** "Is there a relationship between remote work ratio and salary?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "scatter", |
|
"x_axis": "remote_ratio", |
|
"y_axis": "salary_in_usd", |
|
"group_by": "experience_level", |
|
"title": "Remote Work Ratio vs Salary", |
|
"description": "A scatter plot to analyze the relationship between remote work ratio and salary." |
|
}} |
|
|
|
- **Query:** "Which job titles have the highest salaries across regions?" |
|
**Suggested Visualization:** |
|
{{ |
|
"chart_type": "heatmap", |
|
"x_axis": "job_title", |
|
"y_axis": "employee_residence", |
|
"group_by": null, |
|
"title": "Salary Heatmap by Job Title and Region", |
|
"description": "A heatmap showing the concentration of high-paying job titles across regions." |
|
}} |
|
|
|
Only suggest visualizations that logically match the query and dataset. |
|
""" |
|
|
|
|
|
for attempt in range(retries + 1): |
|
try: |
|
response = llm.generate(prompt) |
|
suggestions = json.loads(response) |
|
|
|
|
|
if isinstance(suggestions, list): |
|
valid_suggestions = [s for s in suggestions if is_valid_suggestion(s)] |
|
if valid_suggestions: |
|
return valid_suggestions |
|
else: |
|
st.warning("β οΈ GPT-4o did not suggest valid visualizations.") |
|
return None |
|
|
|
elif isinstance(suggestions, dict): |
|
if is_valid_suggestion(suggestions): |
|
return [suggestions] |
|
else: |
|
st.warning("β οΈ GPT-4o's suggestion is incomplete or invalid.") |
|
return None |
|
|
|
except json.JSONDecodeError: |
|
st.warning(f"β οΈ Attempt {attempt + 1}: GPT-4o returned invalid JSON.") |
|
except Exception as e: |
|
st.error(f"β οΈ Error during GPT-4o call: {e}") |
|
|
|
if attempt < retries: |
|
st.info("π Retrying visualization suggestion...") |
|
|
|
st.error("β Failed to generate a valid visualization after multiple attempts.") |
|
return None |
|
|