Spaces:
Running
Running
Arts-of-coding
commited on
Update dash_plotly_QC_scRNA.py
Browse files- dash_plotly_QC_scRNA.py +17 -17
dash_plotly_QC_scRNA.py
CHANGED
@@ -63,23 +63,23 @@ app = dash.Dash(__name__, external_stylesheets=external_stylesheets) #, requests
|
|
63 |
|
64 |
#df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
|
65 |
|
66 |
-
tab0_content = html.Div([
|
67 |
-
html.Label("Dataset chosen"),
|
68 |
-
dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
|
69 |
-
options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
|
70 |
-
])
|
71 |
-
|
72 |
-
|
73 |
-
Input(component_id='dpdn1', component_property='value')
|
74 |
-
)
|
75 |
-
|
76 |
-
def update_filepath(dpdn1):
|
77 |
-
global df
|
78 |
-
if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
|
79 |
-
print("not identical filepath, chosing other")
|
80 |
-
df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
|
81 |
-
df = df2
|
82 |
-
return
|
83 |
|
84 |
#df = pl.read_parquet(filepath, storage_options=storage_options)
|
85 |
min_value = df[col_features].min()
|
|
|
63 |
|
64 |
#df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
|
65 |
|
66 |
+
#tab0_content = html.Div([
|
67 |
+
# html.Label("Dataset chosen"),
|
68 |
+
# dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
|
69 |
+
# options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
|
70 |
+
#])
|
71 |
+
|
72 |
+
#@app.callback(
|
73 |
+
# Input(component_id='dpdn1', component_property='value')
|
74 |
+
#)
|
75 |
+
|
76 |
+
#def update_filepath(dpdn1):
|
77 |
+
# global df
|
78 |
+
# if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
|
79 |
+
# print("not identical filepath, chosing other")
|
80 |
+
# df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
|
81 |
+
# df = df2
|
82 |
+
# return
|
83 |
|
84 |
#df = pl.read_parquet(filepath, storage_options=storage_options)
|
85 |
min_value = df[col_features].min()
|