import torch import torchvision import torch.nn as nn def create_effnetb2_model(num_classes:int=3, seed:int=3): weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.efficientnet_b2(weights=weights) # Freeze the base layers in the model (this will stop all layers from training) for param in model.parameters(): param.requires_grad = False torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=1408, out_features=num_classes, bias=True)) return model, transforms