Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from PIL import Image | |
from typing import Tuple, Dict | |
class_names = ['pizza', 'steak', 'sushi'] | |
effnetb2, effnetb2_transforms = create_effnetb2_model(3, 42) | |
# Load save weights: | |
effnetb2.load_state_dict( | |
torch.load(f='09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_precent.pth', | |
map_location=torch.device('cpu') | |
) | |
) | |
### Prediction function: EffNetB2 ### | |
def predict(img: Image.Image) -> Tuple[Dict[str, float], float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
img = effnetb2_transforms(img).unsqueeze(0) | |
# Put model into eval mode, make prediction | |
effnetb2.eval() | |
with torch.no_grad(): | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# Create a prediction labal and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]:float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculated pred time | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### Gradio app ### | |
# Create title, description and article strings | |
title = "FoodVision Mini ππ₯©π£" | |
description = 'An [EfficientNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html)' | |
article = 'Created by Arik Kodenzov with Pytorch model deployment' | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # mapping function from input to output | |
inputs=gr.Image(type="pil"), # what are the inputs? | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? | |
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs | |
# Create examples list from "examples/" directory | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch() |