FoodVisionMini / app.py
Arikkod's picture
Update app.py
5740d5e
raw
history blame
1.8 kB
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict
class_names = ['pizza', 'steak', 'sushi']
effnetb2, effnetb2_transforms = create_effnetb2_model(3, 42)
# Load save weights:
effnetb2.load_state_dict(
torch.load(f='09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_precent.pth',
map_location=torch.device('cpu')
)
)
def predict(img):
# Start a timer
start_time = timer()
# Transform the input image for use wit EffNetB2
img = effnetb2_transforms(img).unsqueeze(0)
# Put model into eval mode, make prediction
effnetb2.eval()
with torch.inference_mode():
pred_probs = torch.softmax(effnetb2(img), dim=1)
# Create a prediction labal and prediction probability dictionary
pred_labels_and_probs = {class_names[i]:float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculated pred time
end_time = timer()
pred_time = round(end_time - start_time, 4)
# Return pred dict and pred time
return pred_labels_and_probs, pred_time
title = 'FoodVision Mini πŸ•πŸ₯©πŸ£'
description = 'An [EfficientNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html)'
article = 'Created with Pytorch model deployment'
example_list = [["./examples/" + file] for file in os.listdir("./examples")]
demo = gr.Interface(fn=predict,
inputs=gr.Image(type='pil'),
outputs=[gr.Label(num_top_classes=3, label='Predictions'),
gr.Number(label='Prediction time (s)')],
examples=example_list,
title=title,
description=description,
article=article
)
demo.launch(debug=False,
share=False)