Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
class_names = ['pizza', 'steak', 'sushi'] | |
effnetb2, effnetb2_transforms = create_effnetb2_model(3, 42) | |
# Load save weights: | |
effnetb2.load_state_dict( | |
torch.load(f='09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_precent.pth', | |
map_location=torch.device('cpu') | |
) | |
) | |
def predict(img): | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use wit EffNetB2 | |
img = effnetb2_transforms(img).unsqueeze(0) | |
# Put model into eval mode, make prediction | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# Create a prediction labal and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]:float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculated pred time | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
title = 'FoodVision Mini ππ₯©π£' | |
description = 'An [EfficientNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html)' | |
article = 'Created with Pytorch model deployment' | |
example_list = [["./examples/" + file] for file in os.listdir("./examples")] | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type='pil'), | |
outputs=[gr.Label(num_top_classes=3, label='Predictions'), | |
gr.Number(label='Prediction time (s)')], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article | |
) | |
demo.launch(debug=False, | |
share=False) | |