import gradio as gr #from huggingface_hub import InferenceClient import openai from markdown import markdown from markdownify import markdownify openai.base_url = "https://text.pollinations.ai/openai" openai.api_key = "aaa" """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], max_tokens, temperature, top_p, ): system_message = """Привет! Ты должен рисовать и править рисунки по запросу пользователя. Для генерации ты должен написать промпт на английском для ИИ который будет генерировать картинку. Чтобы отобразить картинку в сообщении в месте где должна быть картинка напиши ![](https://image.pollinations.ai/prompt/{prompt}) где {prompt} Твой промпт. ГОВОРИ ПО-АНГЛИЙСКИ!""" messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": markdownify(val[1])}) messages.append({"role": "user", "content": message}) response = "" response = openai.chat.completions.create(messages=messages, model="openai").choices[0].message.content return markdown(response) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ with gr.Blocks() as demo: gr.Markdown("# Painter") gr.Markdown("⚠️WARNING⚠️: The picture will not be displayed immediately. It will be displayed when generated. DO NOT TELL ME THAT THERE IS NO PICTURE!!! Thank you for your attention.") gr.ChatInterface( #title="Painter", #description="""⚠️WARNING⚠️: The picture will not be displayed immediately. It will be displayed when generated. DO NOT TELL ME THAT THERE IS NO PICTURE!!! Thank you for your attention.""", respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) gr.HTML("Made by Arigadam") if __name__ == "__main__": demo.launch()