import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import bitsandbytes # Load the tokenizer and model from Hugging Face Model Hub model_name = "Arielasgas/javahh" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_name) # Define the function to process user input def generate_response(input_text): inputs = tokenizer(input_text, return_tensors="pt") # Generate a response from the model with torch.no_grad(): outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1) # Decode the generated response generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Define the Gradio interface iface = gr.Interface( fn=generate_response, # Function to be called with user input inputs=gr.Textbox(label="Enter your text"), # Input component (Textbox for user input) outputs=gr.Textbox(label="Generated response") # Output component (Textbox to show response) ) # Launch the Gradio interface iface.launch()