Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,11 @@ if input_option == "Upload Image":
|
|
27 |
|
28 |
# Make predictions
|
29 |
results = model.predict(source=img_np, conf=0.5)
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
# Draw bounding boxes on the image
|
32 |
for result in results:
|
33 |
boxes = result.boxes.xyxy
|
@@ -38,100 +42,100 @@ if input_option == "Upload Image":
|
|
38 |
# Show the resulting image
|
39 |
st.image(img_np, caption='Detected Fire', use_column_width=True)
|
40 |
|
41 |
-
elif input_option == "Use Webcam":
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
79 |
|
80 |
|
81 |
|
82 |
|
83 |
|
84 |
-
elif input_option == "Upload Video":
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
|
121 |
-
|
122 |
-
|
123 |
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
|
136 |
|
137 |
|
|
|
27 |
|
28 |
# Make predictions
|
29 |
results = model.predict(source=img_np, conf=0.5)
|
30 |
+
|
31 |
+
if Fire_Detected= True:
|
32 |
+
print("Fire Detected")
|
33 |
+
else:
|
34 |
+
print("Not")
|
35 |
# Draw bounding boxes on the image
|
36 |
for result in results:
|
37 |
boxes = result.boxes.xyxy
|
|
|
42 |
# Show the resulting image
|
43 |
st.image(img_np, caption='Detected Fire', use_column_width=True)
|
44 |
|
45 |
+
# elif input_option == "Use Webcam":
|
46 |
+
# st.write("Starting webcam for live detection...")
|
47 |
|
48 |
+
# # Start video capture
|
49 |
+
# camera = cv2.VideoCapture(0) # 0 is the default camera
|
50 |
|
51 |
+
# # Create a placeholder for the video feed
|
52 |
+
# video_placeholder = st.empty()
|
53 |
|
54 |
+
# # Main loop for live detection
|
55 |
+
# while True:
|
56 |
+
# ret, frame = camera.read()
|
57 |
+
# if not ret:
|
58 |
+
# st.write("Failed to capture image")
|
59 |
+
# break
|
60 |
|
61 |
+
# # Make predictions
|
62 |
+
# results = model.predict(source=frame, conf=0.5)
|
63 |
|
64 |
+
# # Draw bounding boxes on the frame
|
65 |
+
# for result in results:
|
66 |
+
# boxes = result.boxes.xyxy
|
67 |
+
# for box in boxes:
|
68 |
+
# x1, y1, x2, y2 = box[:4].astype(int)
|
69 |
+
# frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
70 |
|
71 |
+
# # Convert frame to RGB
|
72 |
+
# rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
73 |
|
74 |
+
# # Display the frame in the Streamlit app
|
75 |
+
# video_placeholder.image(rgb_frame, channels="RGB", use_column_width=True)
|
76 |
|
77 |
+
# # Break loop on user command
|
78 |
+
# if st.button("Stop Detection"):
|
79 |
+
# break
|
80 |
|
81 |
+
# # Release the camera
|
82 |
+
# camera.release()
|
83 |
|
84 |
|
85 |
|
86 |
|
87 |
|
88 |
+
# elif input_option == "Upload Video":
|
89 |
+
# uploaded_video = st.file_uploader("Choose a video", type=["mp4", "avi", "mov", "mkv"])
|
90 |
+
# if uploaded_video is not None:
|
91 |
+
# # Save the uploaded video temporarily
|
92 |
+
# temp_video_path = "temp_video.mp4"
|
93 |
+
# with open(temp_video_path, "wb") as f:
|
94 |
+
# f.write(uploaded_video.read())
|
95 |
|
96 |
+
# # Display the uploaded video
|
97 |
+
# st.video(temp_video_path)
|
98 |
|
99 |
+
# # Open the video file
|
100 |
+
# video_capture = cv2.VideoCapture(temp_video_path)
|
101 |
|
102 |
+
# # Create a placeholder for video frame processing
|
103 |
+
# video_frame_placeholder = st.empty()
|
104 |
+
# fire_detected = False
|
105 |
|
106 |
+
# # Loop through video frames
|
107 |
+
# while video_capture.isOpened():
|
108 |
+
# ret, frame = video_capture.read()
|
109 |
+
# if not ret:
|
110 |
+
# break
|
111 |
|
112 |
+
# # Make predictions using your fire detection model
|
113 |
+
# results = model.predict(source=frame, conf=0.5)
|
114 |
|
115 |
|
116 |
|
117 |
+
# # Draw bounding boxes on the frame if fire is detected
|
118 |
+
# for result in results:
|
119 |
+
# boxes = result.boxes.xyxy
|
120 |
+
# for box in boxes:
|
121 |
+
# x1, y1, x2, y2 = box[:4].astype(int)
|
122 |
+
# frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
123 |
+
# fire_detected = True # Set fire_detected flag if a bounding box is found
|
124 |
|
125 |
+
# # Convert the frame to RGB format
|
126 |
+
# rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
127 |
|
128 |
+
# # Display the processed frame
|
129 |
+
# video_frame_placeholder.image(rgb_frame, channels="RGB", use_column_width=True)
|
130 |
|
131 |
+
# # Display detection result
|
132 |
+
# if fire_detected:
|
133 |
+
# st.write("Fire detected in the video.")
|
134 |
+
# else:
|
135 |
+
# st.write("No fire detected in the video.")
|
136 |
|
137 |
+
# # Release the video capture
|
138 |
+
# video_capture.release()
|
139 |
|
140 |
|
141 |
|