Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -77,43 +77,58 @@ elif input_option == "Use Webcam":
|
|
77 |
# Release the camera
|
78 |
camera.release()
|
79 |
|
|
|
|
|
|
|
|
|
|
|
80 |
elif input_option == "Upload Video":
|
81 |
-
uploaded_video = st.file_uploader("
|
82 |
if uploaded_video is not None:
|
83 |
# Save the uploaded video temporarily
|
84 |
temp_video_path = "temp_video.mp4"
|
85 |
with open(temp_video_path, "wb") as f:
|
86 |
f.write(uploaded_video.read())
|
87 |
|
|
|
|
|
|
|
88 |
# Open the video file
|
89 |
video_capture = cv2.VideoCapture(temp_video_path)
|
90 |
|
91 |
-
# Create a placeholder for
|
92 |
video_frame_placeholder = st.empty()
|
|
|
93 |
|
94 |
# Loop through video frames
|
95 |
while video_capture.isOpened():
|
96 |
ret, frame = video_capture.read()
|
97 |
if not ret:
|
98 |
-
st.write("Finished processing video.")
|
99 |
break
|
100 |
|
101 |
-
# Make predictions
|
102 |
results = model.predict(source=frame, conf=0.5)
|
103 |
|
104 |
-
# Draw bounding boxes on the frame
|
105 |
for result in results:
|
106 |
boxes = result.boxes.xyxy
|
107 |
for box in boxes:
|
108 |
x1, y1, x2, y2 = box[:4].astype(int)
|
109 |
frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
110 |
|
111 |
-
# Convert frame to RGB
|
112 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
113 |
|
114 |
-
# Display the frame
|
115 |
video_frame_placeholder.image(rgb_frame, channels="RGB", use_column_width=True)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
# Release the video capture
|
118 |
video_capture.release()
|
119 |
|
|
|
77 |
# Release the camera
|
78 |
camera.release()
|
79 |
|
80 |
+
import streamlit as st
|
81 |
+
import cv2
|
82 |
+
|
83 |
+
# Your fire detection model should be loaded here, e.g., `model = load_your_model()`
|
84 |
+
|
85 |
elif input_option == "Upload Video":
|
86 |
+
uploaded_video = st.file_uploader("Choose a video", type=["mp4", "avi", "mov", "mkv"])
|
87 |
if uploaded_video is not None:
|
88 |
# Save the uploaded video temporarily
|
89 |
temp_video_path = "temp_video.mp4"
|
90 |
with open(temp_video_path, "wb") as f:
|
91 |
f.write(uploaded_video.read())
|
92 |
|
93 |
+
# Display the uploaded video
|
94 |
+
st.video(temp_video_path)
|
95 |
+
|
96 |
# Open the video file
|
97 |
video_capture = cv2.VideoCapture(temp_video_path)
|
98 |
|
99 |
+
# Create a placeholder for video frame processing
|
100 |
video_frame_placeholder = st.empty()
|
101 |
+
fire_detected = False
|
102 |
|
103 |
# Loop through video frames
|
104 |
while video_capture.isOpened():
|
105 |
ret, frame = video_capture.read()
|
106 |
if not ret:
|
|
|
107 |
break
|
108 |
|
109 |
+
# Make predictions using your fire detection model
|
110 |
results = model.predict(source=frame, conf=0.5)
|
111 |
|
112 |
+
# Draw bounding boxes on the frame if fire is detected
|
113 |
for result in results:
|
114 |
boxes = result.boxes.xyxy
|
115 |
for box in boxes:
|
116 |
x1, y1, x2, y2 = box[:4].astype(int)
|
117 |
frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
118 |
+
fire_detected = True # Set fire_detected flag if a bounding box is found
|
119 |
|
120 |
+
# Convert the frame to RGB format
|
121 |
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
122 |
|
123 |
+
# Display the processed frame
|
124 |
video_frame_placeholder.image(rgb_frame, channels="RGB", use_column_width=True)
|
125 |
|
126 |
+
# Display detection result
|
127 |
+
if fire_detected:
|
128 |
+
st.write("Fire detected in the video.")
|
129 |
+
else:
|
130 |
+
st.write("No fire detected in the video.")
|
131 |
+
|
132 |
# Release the video capture
|
133 |
video_capture.release()
|
134 |
|