Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from ultralytics import YOLO | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| # Load the YOLO model (replace with your model path) | |
| model = YOLO("D:\\streamlit\\my_streamlit_app\\fire\\best.pt") | |
| # Use your YOLO model file here | |
| st.title("Fire Detection in Forest") | |
| # Sidebar for input options | |
| input_option = st.sidebar.selectbox("Select Input Method", ["Upload Image", "Use Webcam"]) | |
| if input_option == "Upload Image": | |
| # Upload Image | |
| uploaded_file = st.file_uploader("Choose an Image", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| img = Image.open(uploaded_file) | |
| st.image(img, caption='User Image') | |
| st.write("Classifying...") | |
| # Convert image to numpy array | |
| img_np = np.array(img) | |
| # Make predictions | |
| results = model.predict(source=img_np, conf=0.5) | |
| # Draw bounding boxes on the image | |
| for result in results: | |
| boxes = result.boxes.xyxy | |
| for box in boxes: | |
| x1, y1, x2, y2 = box[:4].astype(int) | |
| img_np = cv2.rectangle(img_np, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
| # Show the resulting image | |
| st.image(img_np, caption='Detected Fire', use_column_width=True) | |
| elif input_option == "Use Webcam": | |
| st.write("Starting webcam for live detection...") | |
| # Start video capture | |
| camera = cv2.VideoCapture(0) # 0 is the default camera | |
| # Create a placeholder for the video feed | |
| video_placeholder = st.empty() | |
| # Main loop for live detection | |
| while True: | |
| ret, frame = camera.read() | |
| if not ret: | |
| st.write("Failed to capture image") | |
| break | |
| # Make predictions | |
| results = model.predict(source=frame, conf=0.5) | |
| # Draw bounding boxes on the frame | |
| for result in results: | |
| boxes = result.boxes.xyxy | |
| for box in boxes: | |
| x1, y1, x2, y2 = box[:4].astype(int) | |
| frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
| # Convert frame to RGB | |
| rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| # Display the frame in the Streamlit app | |
| video_placeholder.image(rgb_frame, channels="RGB", use_column_width=True) | |
| # Break loop on user command | |
| if st.button("Stop Detection"): | |
| break | |
| # Release the camera | |
| camera.release() | |