File size: 5,993 Bytes
7ae96e1 8e6c66b 7ae96e1 8e6c66b 7ae96e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import torch
import torchvision.transforms as transforms
from PIL import Image
from torchvision.models import resnet50
import os
import logging
from typing import Optional, Union
import numpy as np
from pathlib import Path
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Directory Configuration
BASE_DIR = Path(__file__).resolve().parent
MODELS_DIR = BASE_DIR / "models"
EXAMPLES_DIR = BASE_DIR / "examples"
STATIC_DIR = BASE_DIR / "static" / "uploaded"
# Ensure directories exist
STATIC_DIR.mkdir(parents=True, exist_ok=True)
# Global variables
MODEL_PATH = MODELS_DIR / "resnet_50.pth"
CLASSES_PATH = BASE_DIR / "classes.txt"
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def load_class_labels() -> Optional[list]:
"""
Load class labels from the classes.txt file
"""
try:
if not CLASSES_PATH.exists():
raise FileNotFoundError(f"Classes file not found at {CLASSES_PATH}")
with open(CLASSES_PATH, 'r') as f:
return [line.strip() for line in f.readlines()]
except Exception as e:
logger.error(f"Error loading class labels: {str(e)}")
return None
# Load class labels
CLASS_NAMES = load_class_labels()
if CLASS_NAMES is None:
raise RuntimeError("Failed to load class labels from classes.txt")
# Cache the model to avoid reloading for each prediction
model = None
def load_model() -> Optional[torch.nn.Module]:
"""
Load the ResNet50 model with error handling
"""
global model
try:
if model is not None:
return model
if not MODEL_PATH.exists():
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}")
logger.info(f"Loading model on {DEVICE}")
model = resnet50(pretrained=False)
model.fc = torch.nn.Linear(model.fc.in_features, len(CLASS_NAMES))
# Load the model weights
state_dict = torch.load(MODEL_PATH, map_location=DEVICE)
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
model.load_state_dict(state_dict)
model.to(DEVICE)
model.eval()
logger.info("Model loaded successfully")
return model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return None
def preprocess_image(image: Union[np.ndarray, Image.Image]) -> Optional[torch.Tensor]:
"""
Preprocess the input image with error handling
"""
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
return transform(image).unsqueeze(0).to(DEVICE)
except Exception as e:
logger.error(f"Error preprocessing image: {str(e)}")
return None
def predict(image: Union[np.ndarray, None]) -> tuple[str, dict]:
"""
Make predictions on the input image with comprehensive error handling
Returns the predicted class and top 5 confidence scores
"""
try:
if image is None:
return "Error: No image provided", {}
model = load_model()
if model is None:
return "Error: Failed to load model", {}
input_tensor = preprocess_image(image)
if input_tensor is None:
return "Error: Failed to preprocess image", {}
with torch.no_grad():
output = model(input_tensor)
probabilities = torch.nn.functional.softmax(output[0], dim=0)
predicted_class_idx = torch.argmax(probabilities).item()
predicted_class = CLASS_NAMES[predicted_class_idx]
# Get top 5 predictions
top_5_probs, top_5_indices = torch.topk(probabilities, k=5)
# Create confidence dictionary for top 5 classes
confidences = {
CLASS_NAMES[idx.item()]: float(prob.item())
for prob, idx in zip(top_5_probs, top_5_indices)
}
return predicted_class, confidences
except Exception as e:
logger.error(f"Prediction error: {str(e)}")
return f"Error during prediction: {str(e)}", {}
def get_example_list() -> list:
"""
Get list of example images from the examples directory
"""
try:
examples = []
for ext in ['.jpg', '.jpeg', '.png']:
examples.extend(list(EXAMPLES_DIR.glob(f'*.{ext}')))
return [[str(ex)] for ex in sorted(examples)]
except Exception as e:
logger.error(f"Error loading examples: {str(e)}")
return []
# Create Gradio interface with error handling
try:
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="numpy", label="Upload Image"),
outputs=[
gr.Label(label="Predicted Class", num_top_classes=1),
gr.Label(label="Top 5 Predictions", num_top_classes=5)
],
title="Image Classification with ResNet50",
description=(
"Upload an image to classify:\n"
"The model will predict the class and show top 5 confidence scores."
),
examples=get_example_list(),
cache_examples=True,
theme=gr.themes.Base()
)
except Exception as e:
logger.error(f"Error creating Gradio interface: {str(e)}")
raise
if __name__ == "__main__":
try:
load_model() # Pre-load the model
iface.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
debug=False
)
except Exception as e:
logger.error(f"Error launching application: {str(e)}") |