from huggingface_hub import from_pretrained_keras import gradio as gr import tensorflow as tf model = from_pretrained_keras("araeynn/e") def image_classifier(inp): class_names = ["Gingivitis", "Hypodontia"] inp.save("why.png") sunflower_path = "why.png" img = tf.keras.utils.load_img( sunflower_path, target_size=(180, 180) ) img_array = tf.keras.utils.img_to_array(img) img_array = tf.expand_dims(img_array, 0) # Create a batch predictions = model.predict(img_array) score = tf.nn.softmax(predictions) r = {} for class_name in class_names: r[class_name] = score[0][class_names.index(class_name)] return r demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label") demo.launch(debug=True)